算法leetcode|72. 编辑距离(rust重拳出击)


文章目录

  • 72. 编辑距离:
    • 样例 1:
    • 样例 2:
    • 提示:
  • 分析:
  • 题解:
    • rust:
      • 二维数组(易懂)
      • 滚动数组(更加优化的内存空间)
    • go:
    • c++:
    • python:
    • java:


72. 编辑距离:

给你两个单词 word1word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

样例 1:

输入:word1 = "horse", word2 = "ros"输出:3解释:horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e') 

样例 2:

输入:word1 = "intention", word2 = "execution"输出:5解释:intention -> inention (删除 't')inention -> enention (将 'i' 替换为 'e')enention -> exention (将 'n' 替换为 'x')exention -> exection (将 'n' 替换为 'c')exection -> execution (插入 'u')

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1word2 由小写英文字母组成

分析:

  • 面对这道算法题目,二当家的再次陷入了沉思。

  • 编辑距离算法在实际应用中还是很多的,比如一些命令的参数,当输入了错误的参数时,会提示最相似的命令。
    在这里插入图片描述- 想要找最优解,一般就是贪心或者动态规划。

  • 思考后会发现,完整串的编辑距离和子串的编辑距离有关系,所以考虑使用动态规划。

  • 别急,这里还有一个问题,题目中可以对两个单词分别进行三种操作,所以相当于一共有六种操作,其中插入字符依赖较短字符串,而删除字符的操作就反向依赖了较长串,但是动态规划是从一个初识条件开始,朝着一个方向计算的,这里依赖着两种方向,这怎么办?

  • 其实,我们可以将相同效果的操作合并处理:

    1. 对单词 A 删除一个字符和对单词 B 插入一个字符是等价的。例如当单词 A 为 doge,单词 B 为 dog 时,我们既可以删除单词 A 的最后一个字符 e,得到相同的 dog,也可以在单词 B 末尾添加一个字符 e,得到相同的 doge;

    2. 同理,对单词 B 删除一个字符和对单词 A 插入一个字符也是等价的;

    3. 对单词 A 替换一个字符和对单词 B 替换一个字符是等价的。例如当单词 A 为 bat,单词 B 为 cat 时,我们修改单词 A 的第一个字母 b -> c,和修改单词 B 的第一个字母 c -> b 是等价的。

  • 这样一来,本质不同的操作实际上只有三种:

    1. 在单词 A 中插入一个字符;

    2. 在单词 B 中插入一个字符;

    3. 修改单词 A 的一个字符。

  • 这样一来,我们就可以把原问题转化为规模较小的子问题。以样例1为例,我们用 A = horse,B = ros 作为例子,来看一看是如何把这个问题转化为规模较小的若干子问题的:

    1. 在单词 A 中插入一个字符:如果我们知道 horse 到 ro 的编辑距离为 a,那么显然 horse 到 ros 的编辑距离不会超过 a + 1。这是因为我们可以在 a 次操作后将 horse 和 ro 变为相同的字符串,只需要额外的 1 次操作,在单词 A 的末尾添加字符 s,就能在 a + 1 次操作后将 horse 和 ro 变为相同的字符串;

    2. 在单词 B 中插入一个字符:如果我们知道 hors 到 ros 的编辑距离为 b,那么显然 horse 到 ros 的编辑距离不会超过 b + 1,原因同上;

    3. 修改单词 A 的一个字符:如果我们知道 hors 到 ro 的编辑距离为 c,那么显然 horse 到 ros 的编辑距离不会超过 c + 1,原因同上。

  • 那么从 horse 变成 ros 的编辑距离应该为 min(a + 1, b + 1, c + 1)。

  • 因此,我们就可以使用动态规划来解决这个问题了。我们用 D[i][j] 表示 A 的前 i 个字母和 B 的前 j 个字母之间的编辑距离。

  • 如上所述,当我们获得 D[i][j-1],D[i-1][j] 和 D[i-1][j-1] 的值之后就可以计算出 D[i][j]。

    1. D[i][j-1] 为 A 的前 i 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们在 A 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i][j-1] + 1;

    2. D[i-1][j] 为 A 的前 i - 1 个字符和 B 的前 j 个字符编辑距离的子问题。即对于 A 的第 i 个字符,我们在 B 的末尾添加了一个相同的字符,那么 D[i][j] 最小可以为 D[i-1][j] + 1;

    3. D[i-1][j-1] 为 A 前 i - 1 个字符和 B 的前 j - 1 个字符编辑距离的子问题。即对于 B 的第 j 个字符,我们修改 A 的第 i 个字符使它们相同,那么 D[i][j] 最小可以为 D[i-1][j-1] + 1。特别地,如果 A 的第 i 个字符和 B 的第 j 个字符原本就相同,那么我们实际上不需要进行修改操作。在这种情况下,D[i][j] 最小可以为 D[i-1][j-1]。

  • 一般题解到这里就结束了,但其实我们还可以继续优化空间。

  • 由于动态规划中,我们比较两个子串,只依赖于各减少最后一个字符的子串的编辑距离,所以我们的动态规划数组是可以重复利用的,不需要二维数组,只需要一维数组即可,即滚动数组的方式。


题解:

rust:

二维数组(易懂)

impl Solution {pub fn min_distance(word1: String, word2: String) -> i32 {let l1 = word1.len();let l2 = word2.len();// 有一个字符串为空串if l1 == 0 || l2 == 0 {return (l1 + l2) as i32;}// DP 数组let mut dp = vec![vec![0; l2 + 1]; l1 + 1];// 边界状态初始化(0..=l1).for_each(|i| {dp[i][0] = i;});(0..=l2).for_each(|i| {dp[0][i] = i;});// 计算所有 DP 值(1..=l1).for_each(|i| {(1..=l2).for_each(|j| {let insert1 = dp[i - 1][j] + 1;let insert2 = dp[i][j - 1] + 1;let replace1 = if word1.as_bytes()[i - 1] != word2.as_bytes()[j - 1] {dp[i - 1][j - 1] + 1} else {// 两个字母相同,不用修改,所以操作次数不变dp[i - 1][j - 1]};dp[i][j] = insert1.min(insert2).min(replace1);});});return dp[l1][l2] as i32;}
}

滚动数组(更加优化的内存空间)

impl Solution {pub fn min_distance(mut word1: String, mut word2: String) -> i32 {let mut l1 = word1.len();let mut l2 = word2.len();// 有一个字符串为空串if l1 == 0 {return l2 as i32;}if l2 == 0 {return l1 as i32;}// 让内层单词较短,可以让dp数组较小if l1 < l2 {let wt = word1;word1 = word2;word2 = wt;let lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组let mut dp = (0..=l2).collect::<Vec<_>>();// 计算所有 DP 值word1.bytes().enumerate().for_each(|(i1, c1)| {let mut pre = i1;dp[0] = pre + 1;word2.bytes().enumerate().for_each(|(i2, c2)| {let tmp = dp[i2 + 1];if c1 == c2 {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = dp[i2 + 1].min(dp[i2]).min(pre) + 1;}pre = tmp;});});dp[l2] as i32}
}

go:

func minDistance(word1 string, word2 string) int {l1 := len(word1)l2 := len(word2)// 有一个字符串为空串if l1 == 0 {return l2}if l2 == 0 {return l1}// 让内层单词较短,可以让dp数组较小if l1 < l2 {word1, word2 = word2, word1l1, l2 = l2, l1}// DP 滚动数组dp := make([]int, l2+1)for i := 1; i <= l2; i++ {dp[i] = i}// 计算所有 DP 值for i1, c1 := range word1 {pre := i1dp[0] = pre + 1for i2, c2 := range word2 {tmp := dp[i2+1]if c1 == c2 {dp[i2+1] = pre} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母if dp[i2+1] > dp[i2] {dp[i2+1] = dp[i2]}if dp[i2+1] > pre {dp[i2+1] = pre}dp[i2+1] += 1}pre = tmp}}return dp[l2]
}

c++:

class Solution {
public:int minDistance(string word1, string word2) {int l1 = word1.length(), l2 = word2.length();// 有一个字符串为空串if (l1 == 0) {return l2;}if (l2 == 0) {return l1;}// 让内层单词较短,可以让dp数组较小if (l1 < l2) {string wt = word1;word1 = word2;word2 = wt;int lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组int dp[l2 + 1];for (int i = 1; i <= l2; ++i) {dp[i] = i;}// 计算所有 DP 值for (int i1 = 0; i1 < l1; ++i1) {int pre = i1;dp[0] = pre + 1;for (int i2 = 0; i2 < l2; ++i2) {const int tmp = dp[i2 + 1];if (word1[i1] == word2[i2]) {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = min(min(dp[i2 + 1], dp[i2]), pre) + 1;}pre = tmp;}}return dp[l2];}
};

python:

class Solution:def minDistance(self, word1: str, word2: str) -> int:l1 = len(word1)l2 = len(word2)# 有一个字符串为空串if l1 == 0:return l2if l2 == 0:return l1# 让内层单词较短,可以让dp数组较小if l1 < l2:word1, word2 = word2, word1l1, l2 = l2, l1# DP 数组dp = [x for x in range(l2 + 1)]# 计算所有 DP 值for i1 in range(l1):pre = i1dp[0] = pre + 1for i2 in range(l2):tmp = dp[i2 + 1]if word1[i1] == word2[i2]:dp[i2 + 1] = preelse:# dp[i2 + 1]:相当于向第一个单词插入一个字母# dp[i2]:相当于向第二个单词插入一个字母# pre: 相当于修改第一个单词一个字母dp[i2 + 1] = min(dp[i2 + 1], dp[i2], pre) + 1pre = tmpreturn dp[l2]

java:

class Solution {public int minDistance(String word1, String word2) {int l1 = word1.length(), l2 = word2.length();// 有一个字符串为空串if (l1 == 0) {return l2;}if (l2 == 0) {return l1;}// 让内层单词较短,可以让dp数组较小if (l1 < l2) {String wt = word1;word1 = word2;word2 = wt;int lt = l1;l1 = l2;l2 = lt;}// DP 滚动数组int[] dp = new int[l2 + 1];for (int i = 1; i <= l2; ++i) {dp[i] = i;}// 计算所有 DP 值for (int i1 = 0; i1 < l1; ++i1) {int pre = i1;dp[0] = pre + 1;for (int i2 = 0; i2 < l2; ++i2) {final int tmp = dp[i2 + 1];if (word1.charAt(i1) == word2.charAt(i2)) {dp[i2 + 1] = pre;} else {// dp[i2 + 1]:相当于向第一个单词插入一个字母// dp[i2]:相当于向第二个单词插入一个字母// pre: 相当于修改第一个单词一个字母dp[i2 + 1] = Math.min(Math.min(dp[i2 + 1], dp[i2]), pre) + 1;}pre = tmp;}}return dp[l2];}
}

非常感谢你阅读本文~
欢迎【点赞】【收藏】【评论】三连走一波~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://le-yi.blog.csdn.net/ 博客原创~


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/98863.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 数据库存储引擎

一、存储引擎概念 数据库存储引擎是数据库底层软件组件&#xff0c;数据库管理系统--DBMS使用数据引擎进行创建、查询、更新和删除数据操作。不同得存储引擎提供不同得存储机制、索引技巧、锁定水平等功能&#xff0c;使用不同得存储引擎&#xff0c;还可以获得特定的功能。现…

快解析Linux搭建FTP服务器:轻松实现文件传输

在Linux操作系统中&#xff0c;搭建FTP服务器是一种常见且重要的操作。快解析提供了便捷的解决方案&#xff0c;帮助用户快速搭建FTP服务器&#xff0c;实现高效的文件传输和共享。本文将介绍Linux搭建FTP服务器的定义、作用以及其独特的优势&#xff0c;助您了解并利用这一强大…

A - Bone Collector(01背包)

Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave … The bone collector had a big bag with a volume of V ,and along his tr…

超越函数界限:探索JavaScript函数的无限可能

&#x1f3ac; 岸边的风&#xff1a;个人主页 &#x1f525; 个人专栏 :《 VUE 》 《 javaScript 》 ⛺️ 生活的理想&#xff0c;就是为了理想的生活 ! 目录 &#x1f4da; 前言 &#x1f4d8; 1. 函数的基本概念 &#x1f4df; 1.1 函数的定义和调用 &#x1f4df; 1.2 …

远程仓库上创建一个新的分支 `b` 并将远程分支 `a` 的内容克隆到 `b` 分支上

一、需求&#xff1a; 要在远程仓库上创建一个新的分支 b 并将远程分支 a 的内容克隆到 b 分支上&#xff0c;你可以按照以下步骤进行操作&#xff1a; 二、解决方案&#xff1a; 1. 首先&#xff0c;使用 git clone 命令克隆远程仓库到本地。例如&#xff0c;要克隆一个名为…

9万字企业数字化技术中台、数据中台、工业互联网建设方案WORD

导读&#xff1a;原文《9万字企业数字化技术中台、数据中台、工业互联网建设方案WORD》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 目录 1 概述 1.1. 数字化企…

Android Studio实现读取本地相册文件并展示

目录 原文链接效果 代码activity_main.xmlMainActivity 原文链接 效果 代码 activity_main.xml 需要有一个按钮和image来展示图片 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk…

对Lua的理解

在redis和nginx中都潜入了Lua环境用于快速上手开发。但如何理解Lua以及Lua与宿主环境的交互是需要掌握的。 首先是Lua本身&#xff0c;打开5.1的lua版本开始编译后最后生成一个lua的可执行文件&#xff0c;这其实就是一个包含了Lua虚拟机的终端.。所以其实在不管redis也好nginx…

Spring MVC 中的常见注解的用法

目录 认识 Spring MVC什么是 Spring MVCMVC 的定义 Spring MVC 注解的运用1. Spring MVC 的连接RequestMapping 注解 2. 获取参数获取单个参数获取多个参数传递对象表单传参后端参数重命名RequestBody 接收 JSON 对象PathVariable 获取 URL 中的参数上传文件 RequestPart获取 C…

救生员可以戴耳机吗,救生员佩戴蓝牙耳机会影响工作吗?

对于救生员这样一种常驻在水边的职位&#xff0c;戴耳机可以说是比较常见的&#xff0c;佩戴的最主要原因就在于方便进行沟通以及接受指令&#xff0c;以此来确保海边以及海滩等场所的安全&#xff0c;而在这种场景下&#xff0c;对于耳机的考验也是蛮大的&#xff0c;毕竟会出…

计算机视觉之三维重建(二)(摄像机标定)

标定示意图 标定目标 P ′ M P w K [ R T ] P w P^{}MP_wK[R \space T]P_w P′MPw​K[R T]Pw​ 其中 K K K为内参数&#xff0c; [ R T ] [R \space T] [R T]为外参数。该式子需要使用至少六对内外点对进行求解内外参数&#xff08;11个未知参数&#xff09;。 其中 R 3 3 …

js 的正则表达式(二)

1.正则表达式分类&#xff1a; 正则表达式分为普通字符和元字符。 普通字符&#xff1a; 仅能够描述它们本身&#xff0c;这些字符称作普通字符&#xff0c;例如所有的字母和数字。也就是说普通字符只能够匹配字符串中与它们相同的字符。 元字符&#xff1a; 是一些具有特殊含…

NDK 的配置记录~

NDK 的配置 NDK配置 NDK设置在 AS 路径中设置在 local.properties设置在 build.gradle ndk 和 gradle 对应关系gradle的插件和版本对应关系gradle 插件和NDK对应关系 NDK NDK&#xff08;Native Development Kit&#xff09;是一组工具和库&#xff0c;用于在 Android 平台上开…

[国产MCU]-W801开发实例-GPIO输入与中断

GPIO输入与中断 文章目录 GPIO输入与中断1、硬件准备2、软件准备3、驱动实现4、驱动测试W801的GPIO支持软件配置中断,中断触发方式包含:上升沿触发、下降沿触发、高电平触发、低电平触发。本文在前面[ 国产MCU]-W801开发实例-按键与GPIO输入的基础上实现GPIO中断配置。 1、硬…

C++笔记之基类指针动态地指向某一个子类情况列举

C笔记之基类指针动态地指向某一个子类情况列举 code review! 文章目录 C笔记之基类指针动态地指向某一个子类情况列举1.基本的多态示例2.基类中的成员函数可以设置为纯虚函数3.将基本示例修改为使用智能指针并在堆上实例化子类4.父类指针指向基类后&#xff0c;可以去调用只有…

【Android Framework (十二) 】- 智能硬件设备开发

文章目录 前言智能硬件的定义与应用智能硬件产品开发流程智能硬件开发所涉及的技术体系概述关于主板选型主板CPU芯片的选择关于串口通信 总结 前言 针对我过往工作经历&#xff0c;曾在一家智能科技任职Android开发工程师&#xff0c;简单介绍下关于任职期间接触和开发过的一些…

幼儿园托幼机构管理系统 微信小程序

托幼机构管理系统微信小程序从功能、数据流程、可行性、运行环境进行需求分析。对托幼机构管理系统微信小程序的数据库、功能进行了详细设计&#xff0c;分析了主要界面设计和相关组件设计&#xff0c;托幼机构管理系统微信小程序的具体实现进行了介绍。从数据库中获取数据、向…

.netcore windows app启动webserver

创建controller: using Microsoft.AspNetCore.Mvc; using Microsoft.Extensions.Logging; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Text.Json.Serialization; using System.Threading.Tasks;namespace MyWorker.…

Linux 进程的地址空间

一、进程 进程&#xff1a;是一个正在运行的程序 PCB : 即是进程控制块&#xff0c;是进程存在的唯一标志。用来描述进程的属性信息&#xff0c;如进程的pid。 每一个进程都是通过fork复制而来的。 在执行fork之后&#xff0c;先将PCB复制一份给子进程&#xff0c;复制之前先…

美国大模型风向速报(一)为何重视提示工程?LangChain+向量数据库+开源大模型真香...

多家&#xff0c;且独家来自美国的信源同时向“亲爱的数据”表示&#xff0c; 提示工程&#xff08;Prompt Engineering&#xff09;在美国大模型领域备受重视。 读者都要聊&#xff0c; 那就干活。 &#xff08;一&#xff09;开源真香 现阶段&#xff0c;AI开源极客大展身手&…