LitGPT - 20多个高性能LLM,具有预训练、微调和大规模部署的recipes

文章目录

    • 一、关于 LitGPT
    • 二、快速启动
      • 安装LitGPT
        • 高级安装选项
      • 从20多个LLM中进行选择
    • 三、工作流程
      • 1、所有工作流程
      • 2、微调LLM
      • 3、部署LLM
      • 4、评估LLM
      • 5、测试LLM
      • 6、预训练LLM
      • 7、继续预训练LLM
    • 四、最先进的功能
    • 五、训练方法
      • 示例
    • 六、项目亮点
    • 教程


一、关于 LitGPT

LitGPT 用于 使用、微调、预训练和部署LLM Lightning快速⚡⚡

每个LLM都是从头开始实现的,没有抽象和完全控制,使它们在企业规模上非常快速、最小化和高性能。

  • github : https://github.com/Lightning-AI/litgpt
  • 快速启动•模型•Finetune•部署•所有工作流程•功能•配方(YAML)•闪电AI•教程

✅**企业就绪-**Apache 2.0可无限企业使用。

✅**开发人员友好-**无需抽象层和单个文件实现即可轻松调试。

✅**优化性能-**旨在最大化性能、降低成本和加快训练速度的模型。

✅**经过验证的配方-**在企业规模测试的高度优化的训练/微调配方。

✅ From scratch implementations     ✅ No abstractions    ✅ Beginner friendly   
✅ Flash attention                  ✅ FSDP               ✅ LoRA, QLoRA, Adapter
✅ Reduce GPU memory (fp4/8/16/32)  ✅ 1-1000+ GPUs/TPUs  ✅ 20+ LLMs            

二、快速启动

安装LitGPT

pip install 'litgpt[all]'

加载和使用20+LLM中的任何一个:

from litgpt import LLMllm = LLM.load("microsoft/phi-2")
text = llm.generate("Fix the spelling: Every fall, the familly goes to the mountains.")
print(text)
# Corrected Sentence: Every fall, the family goes to the mountains.       

✅针对快速推理进行了优化
✅量化
✅在低内存GPU上运行
✅没有内部抽象层
✅针对生产规模进行了优化


高级安装选项

从源代码安装:

git clone https://github.com/Lightning-AI/litgpt
cd litgpt
pip install -e '.[all]'

探索完整的Python API文档。


从20多个LLM中进行选择

每个模型都是从头开始编写的,以最大限度地提高性能并删除抽象层:

ModelModel sizeAuthorReference
Llama 3, 3.1, 3.21B, 3B, 8B, 70B, 405BMeta AIMeta AI 2024
Code Llama7B, 13B, 34B, 70BMeta AIRozière et al. 2023
Mixtral MoE8x7B, 8x22BMistral AIMistral AI 2023
Mistral7B, 123BMistral AIMistral AI 2023
CodeGemma7BGoogleGoogle Team, Google Deepmind
Gemma 22B, 9B, 27BGoogleGoogle Team, Google Deepmind
Phi 3 & 3.53.8BMicrosoftAbdin et al. 2024

三、工作流程

Finetune•预训练•持续预训练•评估•部署•测试

使用命令行界面运行高级工作流,例如对您自己的数据进行预训练或微调。


1、所有工作流程

安装LitGPT后,选择要运行的模型和工作流程(微调、预训练、评估、部署等…):

# ligpt [action] [model]
litgpt  serve     meta-llama/Llama-3.2-3B-Instruct
litgpt  finetune  meta-llama/Llama-3.2-3B-Instruct
litgpt  pretrain  meta-llama/Llama-3.2-3B-Instruct
litgpt  chat      meta-llama/Llama-3.2-3B-Instruct
litgpt  evaluate  meta-llama/Llama-3.2-3B-Instruct


2、微调LLM

Run on Studios : https://lightning.ai/lightning-ai/studios/litgpt-finetune

微调是采用预训练的AI模型并在为特定任务或应用程序量身定制的较小、专门的数据集上进一步训练它的过程。

# 0) setup your dataset
curl -L https://huggingface.co/datasets/ksaw008/finance_alpaca/resolve/main/finance_alpaca.json -o my_custom_dataset.json# 1) Finetune a model (auto downloads weights)
litgpt finetune microsoft/phi-2 \--data JSON \--data.json_path my_custom_dataset.json \--data.val_split_fraction 0.1 \--out_dir out/custom-model# 2) Test the model
litgpt chat out/custom-model/final# 3) Deploy the model
litgpt serve out/custom-model/final

阅读完整的微调文档



3、部署LLM

Deploy on Studios : https://lightning.ai/lightning-ai/studios/litgpt-serve

部署预训练或微调LLM以在实际应用程序中使用它。部署,自动设置可由网站或应用程序访问的Web服务器。

# deploy an out-of-the-box LLM
litgpt serve microsoft/phi-2# deploy your own trained model
litgpt serve path/to/microsoft/phi-2/checkpoint

向查询服务器显示代码:

在单独的终端中测试服务器并将模型API集成到您的AI产品中:

# 3) Use the server (in a separate Python session)
import requests, json
response = requests.post("http://127.0.0.1:8000/predict",json={"prompt": "Fix typos in the following sentence: Exampel input"}
)
print(response.json()["output"])

阅读完整的部署文档。



4、评估LLM

评估一个LLM来测试它在各种任务上的表现,看看它理解和生成文本的程度。简单地说,我们可以评估它在大学水平的化学、编码等方面的表现…(MMLU、真实质量保证等…)

litgpt evaluate microsoft/phi-2 --tasks 'truthfulqa_mc2,mmlu'

阅读完整的评估文档。



5、测试LLM

Run on Studios : <https://lightning.ai/lightning-ai/studios/litgpt-chat)

通过交互式聊天测试模型的工作情况。使用chat命令聊天、提取嵌入等…

这是一个展示如何使用Phi-2 LLM的示例:

litgpt chat microsoft/phi-2>> Prompt: What do Llamas eat?

完整代码:

# 1) List all supported LLMs
litgpt download list# 2) Use a model (auto downloads weights)
litgpt chat microsoft/phi-2>> Prompt: What do Llamas eat?

某些型号的下载需要额外的访问令牌。您可以在下载文档中信息。

阅读完整的聊天文档。



6、预训练LLM

Run on Studios : https://lightning.ai/lightning-ai/studios/litgpt-pretrain

预训练是在针对特定任务进行微调之前通过将AI模型暴露于大量数据来教授AI模型的过程。


显示代码:

mkdir -p custom_texts
curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt# 1) Download a tokenizer
litgpt download EleutherAI/pythia-160m \--tokenizer_only True# 2) Pretrain the model
litgpt pretrain EleutherAI/pythia-160m \--tokenizer_dir EleutherAI/pythia-160m \--data TextFiles \--data.train_data_path "custom_texts/" \--train.max_tokens 10_000_000 \--out_dir out/custom-model# 3) Test the model
litgpt chat out/custom-model/final

阅读完整的预训练文档



7、继续预训练LLM

Run on Studios : <https://lightning.ai/lightning-ai/studios/litgpt-continue-pretraining)

继续预训练是另一种微调方式,它通过对自定义数据进行训练来专门化已经预训练的模型:


显示代码:

mkdir -p custom_texts
curl https://www.gutenberg.org/cache/epub/24440/pg24440.txt --output custom_texts/book1.txt
curl https://www.gutenberg.org/cache/epub/26393/pg26393.txt --output custom_texts/book2.txt# 1) Continue pretraining a model (auto downloads weights)
litgpt pretrain EleutherAI/pythia-160m \--tokenizer_dir EleutherAI/pythia-160m \--initial_checkpoint_dir EleutherAI/pythia-160m \--data TextFiles \--data.train_data_path "custom_texts/" \--train.max_tokens 10_000_000 \--out_dir out/custom-model# 2) Test the model
litgpt chat out/custom-model/final

阅读完整的持续预训练文档


四、最先进的功能

✅最先进的优化:闪存注意力v2、通过完全分片数据并行支持多GPU、可选CPU卸载以及TPU和XLA支持。

✅预训练、微调和部署

✅通过低精度设置降低计算要求:FP16、BF16和FP16/FP32混合。

✅通过量化降低内存需求:4位浮点数、8位整数和双重量化。

✅配置文件具有出色的开箱即用性能。

✅参数高效微调:LoRA、QLoRA、Adapter和Adapter v2。

✅导出到其他流行的模型重量格式。

✅许多流行的数据集用于预训练和微调,并支持自定义数据集。

✅可读且易于修改的代码,以试验最新的研究思想。


五、训练方法

LitGPT带有经过验证的配方(YAML配置)来训练不同条件下的模型。我们根据我们发现的在不同训练条件下表现最佳的参数生成了这些食谱。

浏览所有训练食谱在这里。


示例

litgpt finetune \--config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml

✅使用配置自定义训练

配置可让您自定义所有粒度参数的训练,例如:

# The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf# Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
out_dir: out/finetune/qlora-llama2-7b# The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-true...

✅示例:LoRA微调配置

# The path to the base model's checkpoint directory to load for finetuning. (type: <class 'Path'>, default: checkpoints/stabilityai/stablelm-base-alpha-3b)
checkpoint_dir: checkpoints/meta-llama/Llama-2-7b-hf# Directory in which to save checkpoints and logs. (type: <class 'Path'>, default: out/lora)
out_dir: out/finetune/qlora-llama2-7b# The precision to use for finetuning. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-true# If set, quantize the model with this algorithm. See ``tutorials/quantize.md`` for more information. (type: Optional[Literal['nf4', 'nf4-dq', 'fp4', 'fp4-dq', 'int8-training']], default: null)
quantize: bnb.nf4# How many devices/GPUs to use. (type: Union[int, str], default: 1)
devices: 1# How many nodes to use. (type: int, default: 1)
num_nodes: 1# The LoRA rank. (type: int, default: 8)
lora_r: 32# The LoRA alpha. (type: int, default: 16)
lora_alpha: 16# The LoRA dropout value. (type: float, default: 0.05)
lora_dropout: 0.05# Whether to apply LoRA to the query weights in attention. (type: bool, default: True)
lora_query: true# Whether to apply LoRA to the key weights in attention. (type: bool, default: False)
lora_key: false# Whether to apply LoRA to the value weights in attention. (type: bool, default: True)
lora_value: true# Whether to apply LoRA to the output projection in the attention block. (type: bool, default: False)
lora_projection: false# Whether to apply LoRA to the weights of the MLP in the attention block. (type: bool, default: False)
lora_mlp: false# Whether to apply LoRA to output head in GPT. (type: bool, default: False)
lora_head: false# Data-related arguments. If not provided, the default is ``litgpt.data.Alpaca``.
data:class_path: litgpt.data.Alpaca2kinit_args:mask_prompt: falseval_split_fraction: 0.05prompt_style: alpacaignore_index: -100seed: 42num_workers: 4download_dir: data/alpaca2k# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
train:# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)save_interval: 200# Number of iterations between logging calls (type: int, default: 1)log_interval: 1# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 128)global_batch_size: 8# Number of samples per data-parallel rank (type: int, default: 4)micro_batch_size: 2# Number of iterations with learning rate warmup active (type: int, default: 100)lr_warmup_steps: 10# Number of epochs to train on (type: Optional[int], default: 5)epochs: 4# Total number of tokens to train on (type: Optional[int], default: null)max_tokens:# Limits the number of optimizer steps to run (type: Optional[int], default: null)max_steps:# Limits the length of samples (type: Optional[int], default: null)max_seq_length: 512# Whether to tie the embedding weights with the language modeling head weights (type: Optional[bool], default: null)tie_embeddings:#   (type: float, default: 0.0003)learning_rate: 0.0002#   (type: float, default: 0.02)weight_decay: 0.0#   (type: float, default: 0.9)beta1: 0.9#   (type: float, default: 0.95)beta2: 0.95#   (type: Optional[float], default: null)max_norm:#   (type: float, default: 6e-05)min_lr: 6.0e-05# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
eval:# Number of optimizer steps between evaluation calls (type: int, default: 100)interval: 100# Number of tokens to generate (type: Optional[int], default: 100)max_new_tokens: 100# Number of iterations (type: int, default: 100)max_iters: 100# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: csv)
logger_name: csv# The random seed to use for reproducibility. (type: int, default: 1337)
seed: 1337

✅覆盖CLI中的任何参数:

litgpt finetune \--config https://raw.githubusercontent.com/Lightning-AI/litgpt/main/config_hub/finetune/llama-2-7b/lora.yaml \--lora_r 4

六、项目亮点

LitGPT为许多伟大的AI项目、计划、挑战,当然还有企业提供支持。请提交拉取请求以考虑某个功能。

  • 📊SAMBA:用于高效无限上下文语言建模的简单混合状态空间模型
    微软研究人员的Samba项目建立在LitGPT代码库之上,将状态空间模型与滑动窗口注意力相结合,优于纯状态空间模型。
  • 🏆NeurIPS 2023大型语言模型效率挑战:1个LLM+1个GPU+1天
    LitGPT存储库是NeurIPS 2023 LLM效率挑战赛的官方入门套件,该比赛的重点是在单个GPU上微调现有的非指令调整LLM 24小时。
  • 🦙TinyLlama:一个开源的小语言模型
    LitGPT支持TinyLlama项目和TinyLlama:开源小语言模型研究论文。
  • 🍪MicroLlama:MicroLlama-300M
    MicroLlama是在TinyLlama和LitGPT支持的50Btoken 上预训练的300M骆驼模型。
  • 🔬预训练较少token 的小型基本LM

研究论文“预训练具有更少令牌的小型基本LM”利用LitGPT,通过从较大模型继承一些转换器块并对较大模型使用的一小部分数据进行训练来开发较小的基本语言模型。它证明,尽管使用的训练数据和资源明显较少,但这些较小的模型可以与较大的模型相比。


教程

🚀开始
⚡微调,包括LoRA、QLoRA和适配器
🤖预训练
💬模型评估
📘支持和自定义数据集
🧹量化
🤯处理内存不足(OOM)错误的提示
🧑🏽‍💻使用云TPU


2025-01-27(一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10043.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【电工基础】低压电器元件,低压断路器(空开QF),接触器(KM)

一.低压电器元件定义 电器可分为高压电器和低压电器两大类&#xff0c;我国现行标准是将工作在交流1200V(50Hz)以下、直流1500V以下的电器设备称为低压电器。 二.低压断路器&#xff0c;空开&#xff0c;空气断路器 1.空开图片与使用方式 当电路中发生严重过载、短路及失压等故…

论文阅读(七):贝叶斯因果表型网络解释遗传变异和生物学知识

1.论文链接&#xff1a;Bayesian Causal Phenotype Network Incorporating Genetic Variation and Biological Knowledge 摘要&#xff1a; 在分离群体中&#xff0c;数量性状基因座&#xff08;QTL&#xff09;定位可以确定对表型有因果效应的QTL。这些方法的一个共同特点是Q…

DeepSeek-R1 模型及GRPO算法学习

总结DeepSeek-R1 模型算法&#xff0c;并对其中的GRPO算法做一些学习补充。 DeepSeek-R1 论文总结 提出了通过强化学习提升大语言模型推理能力的方法&#xff0c;开发出 DeepSeek-R1-Zero 和 DeepSeek-R1 模型&#xff0c;在多个推理任务上表现出色&#xff0c;并开源模型推动…

灰色预测模型

特点&#xff1a; 利用少量、不完全的信息 预测的是指数型的数值 预测的是比较近的数据 灰色生成数列原理&#xff1a; 累加生成&#xff1a; 累减生成&#xff1a;通过累减生成还原成原始数列。 加权相邻生成&#xff1a;&#xff08;会更接近每月中旬&#xff0c;更推荐…

(笔记+作业)书生大模型实战营春节卷王班---L0G2000 Python 基础知识

学员闯关手册&#xff1a;https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频&#xff1a;https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档&#xff1a;https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业&#xff1a;htt…

JSR303校验教学

1、什么是JSR303校验 JSR是Java Specification Requests的缩写&#xff0c;意思是Java 规范提案。是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求。任何人都可以提交JSR&#xff0c;以向Java平台增添新的API和服务。JSR已成为Java界的一个重要标准。…

springboot使用rabbitmq

使用springboot创建rabbitMQ的链接。 整个项目结构如下&#xff1a; 1.maven依赖 <dependency><groupId>com.rabbitmq</groupId><artifactId>amqp-client</artifactId><version>3.4.1</version> </dependency>application.y…

WordPress使用(1)

1. 概述 WordPress是一个开源博客框架&#xff0c;配合不同主题&#xff0c;可以有多种展现方式&#xff0c;博客、企业官网、CMS系统等&#xff0c;都可以很好的实现。 官网&#xff1a;博客工具、发布平台和内容管理系统 – WordPress.org China 简体中文&#xff0c;这里可…

hdfs:介绍三个脚本

1、jps-cluster.sh 如果我们想在Bigdata01 这台电脑上&#xff0c;查看整个集群的服务启动情况&#xff0c;可以使用这个脚本文件。 #!/bin/bash USAGE"使⽤⽅法&#xff1a;sh jps-cluster.sh" NODES("bigdata01" "bigdata02" "bigdata03…

智慧园区管理平台实现智能整合提升企业运营模式与管理效率

内容概要 在当今数字化的背景下&#xff0c;智慧园区管理平台正逐渐成为企业提升运营效率和管理模式的重要工具。这个平台汇聚了多种先进技术&#xff0c;旨在通过智能整合各类资源与信息&#xff0c;帮助企业实现全面的管理创新。 智慧园区管理平台不仅仅是一个数据处理工具…

大模型知识蒸馏技术(2)——蒸馏技术发展简史

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl2006年模型压缩研究 知识蒸馏的早期思想可以追溯到2006年,当时Geoffrey Hinton等人在模型压缩领域进行了开创性研究。尽管当时深度学习尚未像今天这样广泛普及,但Hinton的研究已经为知识迁移和模…

python编程环境安装保姆级教程--python-3.7.2pycharm2021.2.3社区版

第1步安装解释器python-3.7.2&#xff0c;第2步安装pycharm编程软件 1、安装解释器 1.1 什么是解释器 就是将Python高级程序语言翻译成为计算机可以识别的0、1代码 1.2 安装解释器python-3.7.2&#xff08;根据自己的操作系统安装适配的解释器&#xff0c;以Windows为例&…

【仓颉】仓颉编程语言Windows安装指南 配置环境变量 最简单解决中文乱码问题和其他解决方案大全

适用于版本&#xff1a; 0.53.13 &#xff5c; 发布日期&#xff1a; 2024-10-24 &#xff08;以后的可能也适用&#xff09; 本机windows版本&#xff1a;24H2 内部版本号windows 10.0.26100 因为仓颉的官方文档一直没更新&#xff0c;所以在这里写一下如何在windows上完成这些…

VS2008 - debug版 - 由于应用程序配置不正确,应用程序未能启动。重新安装应用程序可能会纠正这个问题。

文章目录 VS2008 - debug版 - 由于应用程序配置不正确&#xff0c;应用程序未能启动。重新安装应用程序可能会纠正这个问题。概述笔记VS2008安装环境VS2008测试程序设置默认报错的情况措施1措施2备注 - exe清单文件的问题是否使用静态库?_BIND_TO_CURRENT_VCLIBS_VERSION的出处…

如何将DeepSeek部署到本地电脑

DeepSeek爆火&#xff0c;如何免费部署到你的电脑上&#xff1f;教程来了&#xff0c;先在你的本地电脑上安装Ollama&#xff0c;然后在Ollama搜索选择DeepSeek模型&#xff0c;即可成功在你的本地电脑上部署DeepSeek 一、安装Ollama 打开Ollama官网&#xff1a;https://ollam…

[Java]泛型(一)泛型类

1. 什么是泛型类&#xff1f; 泛型类是指类中使用了占位符类型&#xff08;类型参数&#xff09;的类。通过使用泛型类&#xff0c;你可以编写可以处理多种数据类型的代码&#xff0c;而无需为每种类型编写单独的类。泛型类使得代码更具通用性和可重用性&#xff0c;同时可以保…

模型I/O功能之模型包装器

文章目录 模型包装器分类LLM模型包装器、聊天模型包装器 截至2023年7月&#xff0c;LangChain支持的大语言模型已经超过了50种&#xff0c;这其中包括了来自OpenAI、Meta、Google等顶尖科技公司的大语言模型&#xff0c;以及各类优秀的开源大语言模型。对于这些大语言模型&…

【漫话机器学习系列】067.希腊字母(greek letters)-写法、名称、读法和常见用途

希腊字母&#xff08;Greek Letters&#xff09; 希腊字母在数学、科学、工程学和编程中广泛使用&#xff0c;常用于表示变量、常量、参数、角度等。以下是希腊字母的完整列表及其常见用途。 大写与小写希腊字母表 大写小写名称&#xff08;英文&#xff09;名称&#xff08;…

JxBrowser 7.41.7 版本发布啦!

JxBrowser 7.41.7 版本发布啦&#xff01; • 已更新 #Chromium 至更新版本 • 实施了多项质量改进 &#x1f517; 点击此处了解更多详情。 &#x1f193; 获取 30 天免费试用。

AI在自动化测试中的伦理挑战

在软件测试领域&#xff0c;人工智能&#xff08;AI&#xff09;已经不再是遥不可及的未来技术&#xff0c;而是正在深刻影响着测试过程的现实力量。尤其是在自动化测试领域&#xff0c;AI通过加速测试脚本生成、自动化缺陷检测、测试数据生成等功能&#xff0c;极大提升了测试…