Flink的常用算子以及实例

1.map

特性:接收一个数据,经过处理之后,就返回一个数据
在这里插入图片描述

1.1. 源码分析

  • 我们来看看map的源码
    在这里插入图片描述
    map需要接收一个MapFunction<T,R>的对象,其中泛型T表示传入的数据类型,R表示经过处理之后输出的数据类型
  • 我们继续往下点,看看MapFunction<T,R>的源码
    在这里插入图片描述
    这是一个接口,那么在代码中,我们就需要实现这个接口

1.2. 案例

那么我们现在要实现一个功能,就是从给一个文件中读取数据,返回每一行的字符串长度。

我们要读取的文件内容如下
在这里插入图片描述

代码贴在这里(为了让打击不看迷糊,导包什么的我就省略了)

public class TransformTest1_Base {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 将并行度设为1env.setParallelism(1);// 3. 读取文件夹DataStreamSource<String> inputDataStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 将文件夹每一行的数据都返回它的长度// 在这里我们用匿名内部类的方式创建了一个MapFunction对象SingleOutputStreamOperator<Integer> dataStream = inputDataStream.map(new MapFunction<String, Integer>() {// 5. 重写map方法,参数s是接收到的一个数据,我们只需要返回它的长度就行了。@Overridepublic Integer map(String s) throws Exception {return s.length();}});// 6. 打印输出dataStream.print();// 7. 启动执行环境env.execute();}
}

显示
在这里插入图片描述

1.3. 总结

map的使用范围就是需要对的那个数据进行处理,并且每次返回一个数据的时候,map就比较方便了。

2. flatMap

  • 接收一个数据,可以返回多条数据

2.1. 源码分析

在这里插入图片描述
我们发现,它需要传入一个FlatMapFunction的一个对象
在这里插入图片描述

我们继续点进去,看看FlatMapFunction的源码,可以发现,FlatMapFunction<T,R>也是一个接口,并且接口里面的方法的返回值是一个Collector,也就是多个值的集合。

2.2. 案例

我们还是读取那个文件,这次我们要做的处理是,将文件的每一行数据按照逗号隔开,给出代码:

public class TransformTest2_Base {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 设置并行度env.setParallelism(1);// 3. 读取文件夹DataStreamSource<String> dataStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 用匿名内部类的方式重写FlatMapFuncction,将每行字符按","隔开SingleOutputStreamOperator<String> flatMapStream = dataStream.flatMap(new FlatMapFunction<String, String>() {@Overridepublic void flatMap(String s, Collector<String> collector) throws Exception {// 5. 分割一行字符,获得对应的字符串数组String[] split = s.split(",");for (String slt : split) {// 6. 将这些数据返回collector.collect(slt);}}});// 7. 打印输出处理后的数据flatMapStream.print();// 8. 启动执行环境env.execute();}
}

可以看到执行的结果
在这里插入图片描述

3. filter

听这个名字就知道是个过滤器,用来过滤数据。
在这里插入图片描述

3.1. 源码分析

我们看看filer的源码,继承子FilterFunction,可以看到,这次泛型就只有一个值了,因为filter只允许返回的数据<=原来的数据,所以只做过滤,并不能改变数据蕾西,没必要设置返回的类型
在这里插入图片描述
我们继续点进去,看看FilterFunction的源码
在这里插入图片描述
果不其然,也是一个接口,而里面的filter方法只有一个参数,并且返回的是一个boolean类型,若返回true则var1原样返回,若返回false,则var1会被过滤掉。

3.2. 案例

我们还是读取以上文件,这一次我们返回以"sensor_1"开头的字符串,其余的一律不返回,给出代码

public class TransformTest3_Base {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 设置并行度env.setParallelism(1);// 3. 读取文件DataStreamSource<String> dataStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 用匿名内部类的方式重写FilterFunctionSingleOutputStreamOperator<String> filterDataStream = dataStream.filter(new FilterFunction<String>() {@Overridepublic boolean filter(String s) throws Exception {// 5. 若s以"sensor_1"开头,则返回truereturn s.startsWith("\"sensor_1\"");}});// 6. 打印处理后的数据filterDataStream.print();// 7. 启动执行环境env.execute();}
}

4. 分组聚合

  • 注意:任何的聚合操作都有默认的分组,聚合是在分组的基础上进行的。比如,对整体进行求和,那么分组就是整体。所以,在做聚合操作之前,一定要明确是在哪个分组上进行聚合操作
  • 注意:聚合操作,本质上是一个多对一(一对一是多对一的特殊情况)的操作。特别注意的是这个’一‘,可以是一个值(mean, sum等),同样也可以是一个对象(list, set等对象)

4.1. 分组(keyBy)

在这里插入图片描述
DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同 key 的元素,在内部以 hash 的形式实现的。

  • 分组就是为了聚合操作做准备的,keyBy方法会将数据流按照hash实现,分别放在不同的分区,每个分区都可以进行聚合操作。
  • 我们可以用这个性质,计算每一个sensor温度的最大值,我们为此将文件修改:
    在这里插入图片描述
    分组之后的图就是所有sensor_1在一个分区里,sensor_6,sensor_7,sensor_10在不同的三个分区,也就是有四个分区,而后三个分区中只有一条数据,所以最大值和最小值都只有一个
  • 在flink中,分组操作是由keyBy方法来完成的,我们来看看keyBy的源码
    在这里插入图片描述
    可以发现,keyBy可以对对象和元组进行聚合。

4.2. 聚合

这些算子可以针对 KeyedStream 的每一个支流做聚合。
⚫ sum():对每个支流求和
⚫ min():对每个支流求最小值
⚫ max():对每个支流求最大值
⚫ minBy()
⚫ maxBy()
我们来看看max()的源码
在这里插入图片描述
这也是传一个属性名,也就是求对应的属性名的最大值。

4.3. 实例演示

public class TransformTest1_RollingAggreation {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 设置并行度env.setParallelism(1);// 3. 读取文件DataStreamSource<String> stringDataStreamSource = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 用map将每行数据变成一个对象SingleOutputStreamOperator<SensorReading> map = stringDataStreamSource.map(new MapFunction<String, SensorReading>() {@Overridepublic SensorReading map(String s) throws Exception {String[] split = s.split(",");return new SensorReading(split[0], new Long(split[1]), new Double(split[2]));}});// 5. 分组操作,以id属性分组KeyedStream<SensorReading, Tuple> keyedstream = map.keyBy("id");// 6. 聚合操作,求每个分组的温度最大值SingleOutputStreamOperator<SensorReading> resultStream = keyedstream.max("temperature");// 7. 打印输出resultStream.print();// 8. 启动执行环境env.execute();}
}

运行结果
在这里插入图片描述
诶,这有人就要问了,不是求每一个分组的温度最大值么?为什么sensor_1的这个分组所有的数据都有?
答:flink是一个流处理分布式框架,这是一条数据流,每来一个数据就得处理一次,所以输出的都是当前状态下的最大值。

4.4. reduce自定义聚合

在实际生产中,不可能让我们完成这么简单的操作就行了,所以我们需要更复杂的操作,而reduce就是满足这个条件,它可以让我们自定义聚合的方式。

  • 我们来看看reduce的源码
    在这里插入图片描述
    reduce需要传入的是一个ReduceFunction的对象,我们再来看看ReduceFunction是个什么东西
    在这里插入图片描述
    var1是当前这个分组的状态,var2是新加入的值,而reduce函数体就是我们要进行的操作,返回一个新的状态。
    到这我就明白了,要是我们向实时获取最大温度的话,var1是之前的最大温度,通过var1和var2的比较就能实现。

4.5. reduce实例

我们这一次要实现一个实时的温度最大值,也就是返回的数据中的时间戳是当前的。

public class TransformTest1_Reduce {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 设置并行度env.setParallelism(1);// 3. 读取文件DataStreamSource<String> dataStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 通过map将每行数据转换为一个对象SingleOutputStreamOperator<SensorReading> map = dataStream.map(new MapFunction<String, SensorReading>() {@Overridepublic SensorReading map(String s) throws Exception {String[] split = s.split(",");return new SensorReading(split[0], new Long(split[1]), new Double(split[2]));}});// 5. 按对象的id分组KeyedStream<SensorReading, Tuple> keyStream = map.keyBy("id");// 6. reduce自定义聚合SingleOutputStreamOperator<SensorReading> reduce = keyStream.reduce(new ReduceFunction<SensorReading>() {@Overridepublic SensorReading reduce(SensorReading sensorReading, SensorReading t1) throws Exception {// 7. 获取当前时间为止接收到的最大温度return new SensorReading(sensorReading.getId(), System.currentTimeMillis(), Math.max(sensorReading.getTemperature(),t1.getTemperature()));}});// 8. 打印输出reduce.print();// 9. 启动运行环境env.execute();}
}

这一次的输出我们就得你好好研究一下了。
在这里插入图片描述
从这块可以发现,我们获取的都是当前的时间戳,而且时间戳也在改变,这一点很好理解,但是下面这个数据就很诡异了。
在这里插入图片描述

  • 这两块的时间戳为什么没有改变呢?这需要我们再来看看reduce方法了,reduce方法是传入两个参数,第一个是当前的状态,第二个是新读取的值,通过方法体的操作返回一个最新的状态。
  • 仔细理解一下这句话,若我刚开始没有数据的时候,那么哪来的状态呢?所以reduce把接收到的第一个参数作为状态,其中sensor_6,7,8这三个分区只有一个数据,所以直接拿来当作状态。

5. 多流转换算子

5.1. 分流操作(Split 和 Select)

  • Split能将流中的数据按条件贴上标签,比如我把温度大于30度的对象贴上一个high标签,把温度低于30度的贴上一个low标签,标签可以贴多个。那么就把流中的数据,按照标签分类了(这里并没有分流)
    在这里插入图片描述
  • Select是按照标签来分流
    在这里插入图片描述
  1. split源码
    在这里插入图片描述
    可以发现,返回的是一个SplitStream,需要传入一个选择器,我们看看OutputSeclector的源码
    在这里插入图片描述
    传入value,返回这个value对应的标签,实现对这个value进行类似"分类"的操作。
  2. select源码
    在这里插入图片描述
    只需要接收一个或者多个标签就能返回包含那个标签对象的数据流。

5.2. 实例演示

  • 我们这一次要把读取到的数据分成三条流,一条是high(高于30度),一条是low(低于30度),一条是all(所有的数据)。代码:
public class TransformTest4_MultipleStreams {public static void main(String[] args) throws Exception {// 1. 获取执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 2. 设置并行度env.setParallelism(1);// 3. 读取文件DataStreamSource<String> dataStream = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 4. 通过map将每行数据转换为一个对象SingleOutputStreamOperator<SensorReading> map = dataStream.map(new MapFunction<String, SensorReading>() {@Overridepublic SensorReading map(String s) throws Exception {String[] split = s.split(",");return new SensorReading(split[0], new Long(split[1]), new Double(split[2]));}});// 5. 按条件贴标签SplitStream<SensorReading> split = map.split(new OutputSelector<SensorReading>() {@Overridepublic Iterable<String> select(SensorReading value) {return value.getTemperature() > 30 ? Collections.singletonList("high") : Collections.singletonList("low");}});// 6. 按标签选择,生成不同的数据流DataStream<SensorReading> high = split.select("high");DataStream<SensorReading> low = split.select("low");DataStream<SensorReading> all = split.select("high", "low");high.print("high");low.print("low");all.print("all");env.execute();}
}

5.3. 合流操作Connect 和 CoMap

在这里插入图片描述
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数
据流,两个数据流被 Connect 之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。
在这里插入图片描述
ConnectedStreams → DataStream:作用于 ConnectedStreams 上,功能与 map和 flatMap 一样,对 ConnectedStreams 中的每一个 Stream 分别进行 map 和 flatMap处理。
类似于一国两制,看似两条流合并在了一起,其实内部依旧是按照自己的约定运行,类型并没有改变。

  1. connect源码
    在这里插入图片描述
    将当前调用者的流和参数中的流合并,返回一个ConnectedStreams<T,R>类型
    在这里插入图片描述
    我们再来看看ConnectionStreams<T,R>中的map方法,其中要传的是一个CoMapFunction<IN1,IN2,R>的对象,最重要的就是这个类,我们来看看这个类
    在这里插入图片描述
    这个CoMapFunction<IN1,IN2,R>和之前的MapFunction不太一样,这里要重写的方法有两个,map1和map2,一个是针对IN1的,一个是针对IN2的,R就是返回类型。
    这下全明白了,在这个方法内部,对这两条流分别操作,合成一条流。

5.4. 实例演示

public class TransformTest5_MultipleStreams {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);// 1. 读取文件DataStreamSource<String> dataStreamSource = env.readTextFile("C:\\Users\\Administrator\\IdeaProjects\\FlinkTutorial\\src\\main\\resources\\sensor");// 2. 将每行数据变成一个对象SingleOutputStreamOperator<SensorReading> map = dataStreamSource.map(new MapFunction<String, SensorReading>() {@Overridepublic SensorReading map(String s) throws Exception {String[] split = s.split(",");return new SensorReading(split[0], new Long(split[1]), new Double(split[2]));}});// 3. 将数据打上标签SplitStream<SensorReading> split = map.split(new OutputSelector<SensorReading>() {@Overridepublic Iterable<String> select(SensorReading value) {return value.getTemperature() > 30 ? Collections.singletonList("high") : Collections.singletonList("low");}});// 4. 按照高温和低温的标签分成两条流DataStream<SensorReading> high = split.select("high");DataStream<SensorReading> low = split.select("low");// 5. 将high流的数据转换为二元组SingleOutputStreamOperator<Tuple2<String, Double>> tuple2SingleOutputStreamOperator = high.map(new MapFunction<SensorReading, Tuple2<String, Double>>() {@Overridepublic Tuple2<String, Double> map(SensorReading sensorReading) throws Exception {return new Tuple2<>(sensorReading.getId(), sensorReading.getTemperature());}});// 6. 将tuple2SingleOutputStreamOperator和low连接ConnectedStreams<Tuple2<String, Double>, SensorReading> connect = tuple2SingleOutputStreamOperator.connect(low);// 7. 调用map传参CoMapFunction将两条流合并成一条流objectSingleOutputStreamOperatorSingleOutputStreamOperator<Object> objectSingleOutputStreamOperator = connect.map(new CoMapFunction<Tuple2<String, Double>, SensorReading, Object>() {// 这是处理high流的方法@Overridepublic Object map1(Tuple2<String, Double> value) throws Exception {return new Tuple3<>(value.getField(0), value.getField(1), "temp is too high");}// 这是处理low流的方法@Overridepublic Object map2(SensorReading value) throws Exception {return new Tuple2<>(value.getTemperature(), "normal");}});objectSingleOutputStreamOperator.print();env.execute();}
}

5.5. 多条流合并(union)

之前我们只能合并两条流,那我们要合并多条流呢?这里我们就需要用到union方法。
在这里插入图片描述

  • Connect 与 Union 区别:
  1. Union 之前两个流的类型必须是一样,Connect 可以不一样,在之后的 coMap中再去调整成为一样的。
  2. Connect 只能操作两个流,Union 可以操作多个。

若我们给出以下代码:

high.union(low,all);

那么high,low,all三条流都会合并在一起。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/100798.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为数通方向HCIP-DataCom H12-821题库(单选题:01-20)

第01题 下面关于OSPF邻居关系和邻接关系描述正确的是 A、邻接关系由 OSPF的 DD 报文维护 B、OSPF 路由器在交换 Hello 报文之前必须建立邻接关系 C、邻居关系是从邻接关系中选出的为了交换路由信息而形成的关系 D、并非所有的邻居关系都可以成为邻接关系 答案&#xff1a;D 解析…

JS逆向-某招聘平台token

前言 本文是该专栏的第56篇,后面会持续分享python爬虫干货知识,记得关注。 通常情况下,JS调试相对方便,只需要chrome或者一些抓包工具,扩展插件,就可以顺利完成逆向分析。目前加密参数的常用逆向方式大致可分为以下几种,一种是根据源码的生成逻辑还原加密代码,一种是补…

C语言和JavaScript中的默认排序行为对比

前言 今天在js里使用sort时遇见了一个不理解的现象 即使用sort默认排序后 9 从排序前的第一位被排到了最后一位.一开始我对js sort的理解和c一样&#xff0c;然后通过查阅后发现并不是这样. 正文 排序是一项常见而重要的操作。不同的编程语言提供了不同的排序函数&#xf…

期权就是股指期货吗,哪个好做一点?

近年来&#xff0c;场内ETF期权产品不断扩大&#xff0c;越来越多的投资者有投资期权的想法。当我们看到期权时&#xff0c;我们会不知不觉地想到期货&#xff0c;虽然期货与期权只有一个字的区别&#xff0c;但实际上有很大的不同&#xff0c;那么期权就是股指期货吗&#xff…

Java【手撕双指针】LeetCode 1089. “复写零“, 图文详解思路分析 + 代码

文章目录 前言一、复写零1, 题目2, 思路分析2.1, 从左往右 or 从右往左2.2, 找到最后一个保留的数 3, 代码展示 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管…

【SpringCloud】Gateway使用

文章目录 概述阻塞式处理模型和非阻塞处理模型概念阻塞式处理模型 三大核心概念 工作流程使用POMYML启动类配置路由通过编码进行配置动态路由常用的Route Predicate自定义全局过滤器自定义filter 官网 https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.2.1…

Swift 周报 第三十五期

文章目录 前言新闻和社区五天市值蒸发 2000 亿美元&#xff0c;苹果公司怎么了&#xff1f;在你的 App 中帮助顾客解决账单问题需要声明原因的 API 列表现已推出 提案通过的提案正在审查的提案 Swift论坛推荐博文话题讨论关于我们 前言 本期是 Swift 编辑组整理周报的第三十五…

【李宏毅机器学习】注意力机制

输出 我们会遇到不同的任务&#xff0c;针对输出的不一样&#xff0c;我们对任务进行划分 给多少输出多少 给一堆向量&#xff0c;输出一个label&#xff0c;比如说情感分析 还有一种任务是由机器决定的要输出多少个label&#xff0c;seq2seq的任务就是这种&#xff0c;翻译也…

FPGA_学习_17_IP核_ROM(无延迟-立即输出)

由于项目中关于厂商提供的温度-偏压曲线数据已经被同事放在ROM表了&#xff0c;我这边可用直接调用。 今天在仿真的时候&#xff0c;发现他的ROM表用的IP核是及时输出的&#xff0c;就是你地址给进去&#xff0c;对应地址的ROM数据就立马输出&#xff0c;没有延迟。 我打开他的…

Android开发基础知识总结(一)初识安卓Android Studio

一.基础理论知识 1.Linux相当于是地基。 MIUI&#xff0c;EMUI等操作系统&#xff0c;是基于安卓的改版——且裁掉了一部分Google的服务。 &#xff08;鸿蒙虽然是改版&#xff0c;但和安卓的架构基本上一致&#xff09; 2.Kotlin和Java都是JVM语言&#xff0c;必须先复习好…

【三维重建】【深度学习】NeuS代码Pytorch实现--测试阶段代码解析(下)

【三维重建】【深度学习】NeuS代码Pytorch实现–测试阶段代码解析(下) 论文提出了一种新颖的神经表面重建方法&#xff0c;称为NeuS&#xff0c;用于从2D图像输入以高保真度重建对象和场景。在NeuS中建议将曲面表示为有符号距离函数(SDF)的零级集&#xff0c;并开发一种新的体绘…

3D医学教学虚拟仿真系统:身临其境感受人体结构和功能

3D医学教学虚拟仿真系统是一种基于虚拟现实技术的教学工具&#xff0c;它可以帮助学生更好地理解和掌握医学知识。这种课件通常包括人体解剖学、生理学、病理学等方面的教学内容&#xff0c;通过三维立体的图像和动画展示&#xff0c;让学生更加直观地了解人体结构和功能。 与传…

今天七夕,群友让我帮忙给他分配一个对象,于是我。。。

今天七夕&#xff0c;群友让我帮忙给他分配一个对象&#xff0c;于是我只好尝试给他分配对象了&#xff1a; CGirlFrined *pGF new CGirlFrined("大屌萌妹");int nRet (群友).SetGirlFriend(pGF);if (nRet ! 0) {alert("分配失败&#xff01;"); }后来觉…

交换机生成树STP

生成树协议&#xff08;spanning-tree-protocol,stp&#xff09;&#xff1a;在具有物理环路的交换机网络上生成没有回路的逻辑网络的方法&#xff0c;生成树协议使用生成树算法&#xff0c;在一个具有冗余路径的容错网络中计算出一个无环路的路径&#xff0c;使一部分端口处于…

「UG/NX」Block UI 超级截面SuperSection

✨博客主页何曾参静谧的博客📌文章专栏「UG/NX」BlockUI集合📚全部专栏「UG/NX」NX二次开发「UG/NX」BlockUI集合「VS」Visual Studio「QT」QT5程序设计「C/C+&#

easyexcel合并单元格底色

一、效果图 二、导出接口代码 PostMapping("selectAllMagicExport")public void selectAllMagicExport(HttpServletRequest request, HttpServletResponse response) throws IOException {ServiceResult<SearchResult<TestMetLineFe2o3Export>> result …

【3D激光SLAM】LOAM源代码解析--transformMaintenance.cpp

系列文章目录 【3D激光SLAM】LOAM源代码解析–scanRegistration.cpp 【3D激光SLAM】LOAM源代码解析–laserOdometry.cpp 【3D激光SLAM】LOAM源代码解析–laserMapiing.cpp 【3D激光SLAM】LOAM源代码解析–transformMaintenance.cpp 写在前面 本系列文章将对LOAM源代码进行讲解…

Hadoop学习:深入解析MapReduce的大数据魔力(三)

Hadoop学习&#xff1a;深入解析MapReduce的大数据魔力&#xff08;三&#xff09; 3.5 MapReduce 内核源码解析3.5.1 MapTask 工作机制3.5.2 ReduceTask 工作机制3.5.3 ReduceTask 并行度决定机制 3.6 数据清洗&#xff08;ETL&#xff09;1&#xff09;需求2&#xff09;需求…

python实战【外星人入侵】游戏并改编为【梅西vsC罗】(球迷整活)——搭建环境、源码、读取最高分及生成可执行的.exe文件

文章目录 &#x1f3a5;前言&#x1f4bc;安装Pygame&#x1f50b;游戏的实现读写并存储【外星人入侵】游戏最高分游戏源码alien_invasion.pygame_functions.pyship.pyalien.pybullet.pybutton.pyscoreboard.pygame_stats.pysettings.py宇宙飞船和外星人的 .bmp类型文件 &#…

Java之继承详解二

3.7 方法重写 3.7.1 概念 方法重写 &#xff1a;子类中出现与父类一模一样的方法时&#xff08;返回值类型&#xff0c;方法名和参数列表都相同&#xff09;&#xff0c;会出现覆盖效果&#xff0c;也称为重写或者复写。声明不变&#xff0c;重新实现。 3.7.2 使用场景与案例…