【Block总结】PConv,部分卷积|即插即用

论文信息

标题: Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks

论文链接: https://arxiv.org/pdf/2303.03667

GitHub链接: https://github.com/JierunChen/FasterNet
在这里插入图片描述

创新点

该论文的核心创新在于提出了一种新的运算符——部分卷积(PConv),旨在提高神经网络的每秒浮点操作数(FLOPS),从而实现更快的推理速度。研究表明,传统方法往往专注于减少浮点运算(FLOPs),但这并不一定能有效降低延迟。相反,提升FLOPS的效率才是实现快速神经网络的关键。
在这里插入图片描述

方法

论文中提出的PConv运算符通过以下方式优化了神经网络的性能:

  • 减少冗余计算: PConv仅对部分输入通道应用卷积操作,而保留其他通道不变,从而降低了计算复杂度。

  • 优化内存访问: 通过减少频繁的内存访问,PConv提高了计算效率,特别是在深度卷积(DWConv)中表现尤为明显。

  • 设计理念: 该方法强调在保持较低FLOPs的同时,提升FLOPS,以实现更高的计算速度和更低的延迟。

效果

实验结果显示,使用FasterNet架构的模型在多个基准测试中表现出色:

  • 速度提升: FasterNet-T0在GPU、CPU和ARM处理器上的速度分别比MobileViT-XXS快2.8倍、3.3倍和2.4倍。

  • 准确率提高: 在ImageNet-1k数据集上,FasterNet-L模型达到了83.5%的Top-1准确率,与Swin-B相当,同时在GPU上提高了36%的推理吞吐量,并在CPU上节省了37%的计算时间。

实验结果

论文通过一系列实验验证了PConv的有效性,结果表明:

  • FLOPS与延迟的关系: 许多现有网络的FLOPS较低,导致它们在实际应用中并不够快。PConv的引入有效解决了这一问题。

  • 与其他模型的比较: FasterNet在速度和准确性上超越了其他主流目标检测器,如YOLOv7,显示出其在实际应用中的优势。

总结

论文《Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks》通过引入部分卷积(PConv)运算符,成功提升了神经网络的计算效率,强调了FLOPS的重要性。研究表明,单纯减少FLOPs并不能有效降低延迟,而提升FLOPS才是实现快速神经网络的关键。FasterNet的实验结果验证了这一理论,为未来的神经网络设计提供了新的思路和方法。

代码

import torch
from torch import nn
from torch import Tensorclass Partial_conv3(nn.Module):def __init__(self, dim, n_div, forward):super().__init__()self.dim_conv3 = dim // n_divself.dim_untouched = dim - self.dim_conv3self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)if forward == 'slicing':self.forward = self.forward_slicingelif forward == 'split_cat':self.forward = self.forward_split_catelse:raise NotImplementedErrordef forward_slicing(self, x: Tensor) -> Tensor:# only for inferencex = x.clone()   # !!! Keep the original input intact for the residual connection laterx[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])return xdef forward_split_cat(self, x: Tensor) -> Tensor:# for training/inferencex1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)x1 = self.partial_conv3(x1)x = torch.cat((x1, x2), 1)return xif __name__ == "__main__":# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, channels, height, width)x = torch.randn(1,32,40,40).to(device)# 初始化 pconv 模块dim=32block = Partial_conv3(dim,n_div=4,forward='slicing')print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)

输出结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10223.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Maven的单元测试

1. 单元测试的基本概念 单元测试(Unit Testing) 是一种软件测试方法,专注于测试程序中的最小可测试单元——通常是单个类或方法。通过单元测试,可以确保每个模块按预期工作,从而提高代码的质量和可靠性。 2.安装和配…

【漫话机器学习系列】069.哈达马乘积(Hadamard Product)

哈达马乘积(Hadamard Product) 哈达马乘积(Hadamard Product)是两个矩阵之间的一种元素级操作,也称为逐元素乘积(Element-wise Product)。它以矩阵的对应元素相乘为规则,生成一个新…

【设计测试用例自动化测试性能测试 实战篇】

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 设计测试用例…

AJAX综合案例——图书管理

黑马程序员视频地址: AJAX-Day02-10.案例_图书管理AJAX-Day02-10.案例_图书管理_总结_V1.0是黑马程序员前端AJAX入门到实战全套教程,包含学前端框架必会的(ajaxnode.jswebpackgit),一套全覆盖的第25集视频&#xff0c…

5.3.2 软件设计原则

文章目录 抽象模块化信息隐蔽与独立性衡量 软件设计原则:抽象、模块化、信息隐蔽。 抽象 抽象是抽出事物本质的共同特性。过程抽象是指将一个明确定义功能的操作当作单个实体看待。数据抽象是对数据的类型、操作、取值范围进行定义,然后通过这些操作对数…

Jason配置环境变量

jason官网 https://jason-lang.github.io/ https://github.com/jason-lang/jason/releases 步骤 安装 Java 21 或更高版本 安装 Visual Studio Code 根据操作系统,请按照以下具体步骤操作 视窗 下载 Jason 的最新版本,选择“jason-bin-3.3.0.zip”…

关于bash内建echo输出多行文本

echo命令 使用下述命令可以判断当前使用的echo命令是内建命令还是外部命令 type echo有下述输出,说明是内建命令 bash的内建命令输出多行文本时会拆分多次写入 如果希望不拆分多次写入,可以借用tee工具 tee工具可以将命令的输出同时发送到终端和文件…

消息队列篇--通信协议篇--TCP和UDP(3次握手和4次挥手,与Socket和webSocket的概念区别等)

1、TCP和UDP概述 TCP(传输控制协议,Transmission Control Protocol)和UDP(用户数据报协议,User Datagram Protocol)都算是最底层的通信协议,它们位于OSI模型的传输层。*传输层的主要职责是确保…

unity学习22:Application类其他功能

目录 1 是否允许后台运行 1.1 Application.runInBackground,显示是否允许后台运行 1.2 设置的地方 2 打开URL 2.1 Application.OpenURL("") 打开超链接 3 退出游戏 3.1 Application.Quit() 退出游戏 4 场景相关 5 返回游戏状态 6 控制游戏的行…

deepseek R1 14b显存占用

RTX2080ti 11G显卡,模型7b速度挺快,试试14B也不错。 7B显存使用5.6G,14B显存刚好够,出文字速度差不多。 打算自己写个移动宽带的IPTV播放器,不知道怎么下手,就先问他了。

.NET Core缓存

目录 缓存的概念 客户端响应缓存 cache-control 服务器端响应缓存 内存缓存(In-memory cache) 用法 GetOrCreateAsync 缓存过期时间策略 缓存的过期时间 解决方法: 两种过期时间策略: 绝对过期时间 滑动过期时间 两…

C++,STL 六大组件:容器、迭代器、算法、函数对象、适配器、分配器

文章目录 引言一、容器(Containers)主要分类 二、迭代器(Iterators)三、算法(Algorithms)四、函数对象(Functors)五、适配器(Adapters)六、分配器&#xff08…

996引擎 - NPC-添加NPC引擎自带形象

996引擎 - NPC-添加NPC引擎自带形象 截图参考添加NPC参考资料截图参考 添加NPC 编辑NPC表:Envir\DATA\cfg_npclist.xls 1.1. 需要临时隐藏NPC时可以在id前加 // 1.2. 如果NPC朝向不对,可以调整dir 列。(按8方向,上是0顺时针数。我这里给的4) 1.3. 形象代码:NPC代码、怪物…

【懒删除堆】力扣2349. 设计数字容器系统

设计一个数字容器系统,可以实现以下功能: 在系统中给定下标处 插入 或者 替换 一个数字。 返回 系统中给定数字的最小下标。 请你实现一个 NumberContainers 类: NumberContainers() 初始化数字容器系统。 void change(int index, int numb…

利用飞书机器人进行 - ArXiv自动化检索推荐

相关作者的Github仓库 ArXivToday-Lark 使用教程 Step1 新建机器人 根据飞书官方机器人使用手册,新建自定义机器人,并记录好webhook地址,后续将在配置文件中更新该地址。 可以先完成到后续步骤之前,后续的步骤与安全相关&…

SpringBoot 日志

目录 一. 日志概述 二. 日志的使用 1. 打印日志 (1) 获取日志对象 (2) 输出要打印的内容 2. 日志框架简介 (1) 门面模式简介 (2) SLF4J 框架简介 3. 日志的格式 4. 日志的级别 5. 日志配置 (1) 配置日志级别 (2) 日志持久化存储 ① 配置日志文件名 ② 配置日志的…

RK3568中使用QT opencv(显示基础图像)

文章目录 一、查看对应的开发环境是否有opencv的库二、QT使用opencv 一、查看对应的开发环境是否有opencv的库 在开发板中的/usr/lib目录下查看是否有opencv的库: 这里使用的是正点原子的ubuntu虚拟机,在他的虚拟机里面已经安装好了opencv的库。 二、…

LMI Gocator GO_SDK VS2019引用配置

LMI SDK在VS2019中的引用是真的坑爹,总结一下经验,希望后来的人能少走弯路.大致内容如下: (1) 环境变量 (2)C/C 附加包含目录 E:\GWQ\Gocator\GO_SDK\Gocator\GoSdk E:\GWQ\Gocator\GO_SDK\Platform\kApi (3&#…

模型I/O

文章目录 什么是模型I/O模型I/O功能之输出解析器输出解析器的功能输出解析器的使用Pydantic JSON输出解析器结构化输出解析器 什么是模型I/O 模型I/O在所有LLM应用中,核心元素无疑都是模型本身。与模型进行有效的交互是实现高效、灵活和可扩展应用的关键。LangChain…

C语言练习(31)

有5个学生,每个学生有3门课程的成绩,从键盘输入以上数据(包括学号、姓名、3门课程成绩),计算出平均成绩,将原有数据和计算出的平均分数存放在磁盘文件stud中。 设5名学生的学号、姓名和3门课程成绩如下&am…