013:深度学习之神经网络

本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。

合集完整版请参考这里。

深度学习是机器学习中重要的一个学科分支,它的特点就在于需要构建多层且“深度”的神经网络。

人们在探索人工智能初期,就曾设想构建一个用数学方式来表达的模型,它可以模拟人的大脑。

大脑我们都知道,有很多神经元,每个神经元之间通过突触链接。
在这里插入图片描述

神经网络的设计就是模仿了这一结构。

只不过,在数学上,将每一个神经元换成了一个个的算法,比如卷积算法。突触对于神经元的激活则换成了激活函数,比如Relu激活函数。
在这里插入图片描述

上图是我用 Netron 打开的一个真实的自动驾驶领域用到的一个AI神经网络模型。可以看到该模型是由一层一层的算法(算子)堆积而成。该神经网络最终就可以完成一些图像的识别或者汽车周围环境的感知任务。

如果把上面的一部分放大,可以看到如下的样子:
在这里插入图片描述

这里面就有一些经典的算法,比如Conv(代表的是卷积运算)、Relu(代表的是激活运算)等。这些算法模拟了人类大脑中的神经元,组织在一起构成了一个非常庞大的神经网络。

本专栏在后面会一步步来搭建一个类似的神经网络。

需要说明的,完成不同任务的神经网络的结构是不同的,但都有一个特点:网络的深度很深。

你可能会有疑问,这样通过一层层算法搭建起来的神经网络真的有效吗?

答案是肯定的。

大量的实验已经验证了这种深度的神经网络是可以学习到很多图片或文本的重要特征,从而在神经网络输出结果时可以输出正确的结果。

比如,进行图像识别的神经网络可以正确的输出一个图像类别,图像检测的神经网络可以正确的输出物体在图像中的坐标和类别,如下:

在这里插入图片描述

而涉及语音和文本翻译的神经网络则可以正确的输出中文对应的英文翻译等。

至于为什么神经网络有效,也就衍生出一个新的研究领域:神经网络的可解释性。很多人试图通过研究探究神经网络中深层次的原理,进行解释,该领域目前仍然是一个比较前沿的研究方向。

人脑的原理人们研究了很多年,至今也无法真正说清其中的原理,神经网络的可解释性同样任重道远。

但不管怎样,如此深度的神经网络已经取得了举世瞩目的成就,基于yolo的目标检测已经大规模应用于工业检测中,基于transformer的大模型也几乎成为了目前提高生产力的工具。

神经网络的分类

神经网络的分类有很多种,下面介绍两种你可能会经常听到的。

卷积神经网络(Convolutional Neural Networks, CNN)

该神经网络指的是神经网络中以卷积为主,辅助的有一些激活或者池化,只要是符合这种特性的神经网络,都可以称之为卷积神经网络。上面展示的那个,也可以看作是一种卷积神经网络。

卷积神经网络一般用于计算机视觉领域,用于图像分类、检测、分割等,这是由于卷积的局部性特征所决定的。

循环神经网络

该神经网络指的是可以处理带时序数据的网络。什么是时序呢,就是数据中带有时间序列。

比如语音和文本,我说一句话“你欠我100万”,这句话就带有时序信息,神经网络处理这类数据,需要找到“你”、“我、“欠”这些词之间的先后关系,才能正确的理解这句话。

否则“你欠我100万”和“我欠你100万”是两种完全不一样的意思。

典型的循环网络有 RNN 以及在此基础之上发展出来的 lstm,甚至基于transformer的架构都可以处理这种时序信息。

至于其他分类,感兴趣的话可以去搜一搜看看。本专栏学习的内容主要集中在卷积神经网络,也就是适用于计算机视觉的一大类网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/1024.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 将RTF文档转换为Word、PDF、HTML、图片

RTF文档因其跨平台兼容性而广泛使用,但有时在不同的应用场景可能需要特定的文档格式。例如,Word文档适合编辑和协作,PDF文档适合打印和分发,HTML文档适合在线展示,图片格式则适合社交媒体分享。因此我们可能会需要将RT…

【2024年华为OD机试】(C卷,100分)- 攀登者1 (Java JS PythonC/C++)

一、问题描述 题目描述 攀登者喜欢寻找各种地图,并且尝试攀登到最高的山峰。 地图表示为一维数组,数组的索引代表水平位置,数组的元素代表相对海拔高度。其中数组元素0代表地面。 例如:[0,1,2,4,3,1,0,0,1,2,3,1,2,1,0]&…

day06_Spark SQL

文章目录 day06_Spark SQL课程笔记一、今日课程内容二、DataFrame详解(掌握)5.清洗相关的API6.Spark SQL的Shuffle分区设置7.数据写出操作写出到文件写出到数据库 三、Spark SQL的综合案例(掌握)1、常见DSL代码整理2、电影分析案例…

Copula算法原理和R语言股市收益率相依性可视化分析

阅读全文:http://tecdat.cn/?p6193 copula是将多变量分布函数与其边缘分布函数耦合的函数,通常称为边缘。在本视频中,我们通过可视化的方式直观地介绍了Copula函数,并通过R软件应用于金融时间序列数据来理解它(点击文…

Spring Boot 支持哪些日志框架

Spring Boot 支持多种日志框架,主要包括以下几种: SLF4J (Simple Logging Facade for Java) Logback(默认)Log4j 2Java Util Logging (JUL) 其中,Spring Boot 默认使用 SLF4J 和 Logback 作为日志框架。如果你需要使…

OpenCV基础:视频的采集、读取与录制

从摄像头采集视频 相关接口 - VideoCapture VideoCapture 用于从视频文件、摄像头或其他视频流设备中读取视频帧。它可以捕捉来自多种源的视频。 主要参数: cv2.VideoCapture(source): source: 这是一个整数或字符串,表示视频的来源。 如果是整数&a…

Uniapp仿ChatGPT Stream流式输出(非Websocket)

Uniapp仿ChatGPT Stream流式输出(非Websocket) 前言:流式输出可以使用websocket也可以使用stream来实现EventSource是 HTML5 中的一个接口,用于接收服务器发送的事件流(Server - Sent Events,SSE&#xff…

《自动驾驶与机器人中的SLAM技术》ch2:基础数学知识

目录 2.1 几何学 向量的内积和外积 旋转矩阵 旋转向量 四元数 李群和李代数 SO(3)上的 BCH 线性近似式 2.2 运动学 李群视角下的运动学 SO(3) t 上的运动学 线速度和加速度 扰动模型和雅可比矩阵 典型算例:对向量进行旋转 典型算例:旋转的复合 2.3 …

深入 Flutter 和 Compose 在 UI 渲染刷新时 Diff 实现对比

众所周知,不管是什么框架,在前端 UI 渲染时,都会有构造出一套相关的渲染树,并且在 UI 更新时,为了尽可能提高性能,一般都只会进行「差异化」更新,而不是对整个 UI Tree 进行刷新,所以…

Elasticsearch—索引库操作(增删查改)

Elasticsearch中Index就相当于MySQL中的数据库表 Mapping映射就类似表的结构。 因此我们想要向Elasticsearch中存储数据,必须先创建Index和Mapping 1. Mapping映射属性 Mapping是对索引库中文档的约束,常见的Mapping属性包括: type:字段数据类…

occ的开发框架

occ的开发框架 1.Introduction This manual explains how to use the Open CASCADE Application Framework (OCAF). It provides basic documentation on using OCAF. 2.Purpose of OCAF OCAF (the Open CASCADE Application Framework) is an easy-to-use platform for ra…

esp32在编译是报错在idf中有该文件,但是说没有

报错没有头文件esp_efuse_table.h D:/Espressif/frameworks/esp-idf-v5.3.1/components/driver/deprecated/driver/i2s.h:27:2: warning: #warning "This set of I2S APIs has been deprecated, please include driver/i2s_std.h, driver/i2s_pdm.h or driver/i2s_tdm.h …

git - 用SSH方式迁出远端git库

文章目录 git - 用SSH方式迁出远端git库概述笔记以gitee为例产生RSA密钥对 备注githubEND git - 用SSH方式迁出远端git库 概述 最近一段时间,在网络没问题的情况下,用git方式直接迁出git库总是会失败。 失败都是在远端, 显示RPC错误。 但是git服务器端…

http和https有哪些不同

http和https有哪些不同 1.数据传输的安全性:http非加密,https加密 2.端口号:http默认80端口,https默认443端口 3.性能:http基于tcp三次握手建立连接,https在tcp三次握手后还有TLS协议的四次握手确认加密…

超详细-java-uniapp小程序-引导关注公众号、判断用户是否关注公众号

目录 1、前期准备 公众号和小程序相互关联 准备公众号文章 注册公众号测试号 微信静默授权的独立html 文件 2: 小程序代码 webview页面代码 小程序首页代码 3:后端代码 1:增加公众号配置项 2:读取公众号配置项 3&…

【Python进阶——分布式计算框架pyspark】

Apache Spark是用于大规模数据处理的统一分析引擎 简单来说,Spark是一款分布式的计算框架,用于调度成百上千的服务器集群,计算TB、PB乃至EB级别的海量数据,Spark作为全球顶级的分布式计算框架,支持众多的编程语言进行开…

基于 FastExcel 与消息队列高效生成及导入机构用户数据

🎯 本文档详细介绍了开发机构用户数据导入功能的必要性及实现方法,如针对教育机构如学校场景下提高用户体验和管理效率的需求。文中首先分析了直接对接学生管理系统与平台对接的优势,包括减少人工审核成本、提高身份验证准确性等。接着介绍了…

校园跑腿小程序---轮播图,导航栏开发

hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的在校大学生…

前端练习题

图片&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>用户信息页面</title><style>body {font-family: Arial, sans-serif;margin: 20px;}.user-info {display: flex;align-it…

AllData是怎么样的一款数据中台产品?

&#x1f525;&#x1f525; AllData大数据产品是可定义数据中台&#xff0c;以数据平台为底座&#xff0c;以数据中台为桥梁&#xff0c;以机器学习平台为中层框架&#xff0c;以大模型应用为上游产品&#xff0c;提供全链路数字化解决方案。 ✨奥零数据科技官网&#xff1a;…