matlab使用教程(21)—求函数最值

1. 求函数最优值

1.1求一元函数的最小值

        如果给定了一个一元数学函数,可以使用 fminbnd 函数求该函数在给定区间中的局部最小值。例如,请考虑 MATLAB® 提供的 humps.m 函数。下图显示了 humps 的图。
x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel('x')
ylabel('humps(x)')
grid on

        若要计算 humps 函数在 (0.3,1) 范围内的最小值,请使用 

x = fminbnd(@humps,0.3,1)
x = 0.6370
        您可以通过使用 optimset 创建选项并将 Display 选项设置为 'iter' 来查看求解过程的详细信息。将所得选项传递给 fminbnd
options = optimset('Display','iter');
x = fminbnd(@humps,0.3,1,options)
Func-count x f(x) Procedure
1 0.567376 12.9098 initial
2 0.732624 13.7746 golden
3 0.465248 25.1714 golden
4 0.644416 11.2693 parabolic
5 0.6413 11.2583 parabolic
6 0.637618 11.2529 parabolic
7 0.636985 11.2528 parabolic
8 0.637019 11.2528 parabolic
9 0.637052 11.2528 parabolic
Optimization terminated:
the current x satisfies the termination criteria using OPTIONS.TolX of 1.000000e-04
x = 0.6370
        这种迭代输出显示了 x 的当前值以及每次计算函数时 f(x) 处的函数值。对于 fminbnd,一次函数计算对应一次算法迭代。最后一列显示 fminbnd 在每次迭代中使用的过程,即黄金分割搜索或抛物线插值。。

1.2 求多元函数的最小值

        fminsearch 函数与 fminbnd 类似,不同之处在于前者处理多变量函数。请指定起始向量 x 0,而非起始区间。 fminsearch 尝试返回一个向量 x,该向量是数学函数在此起始向量附近的局部最小值。要尝试执行 fminsearch ,请创建一个三元(即 x y z )函数 three_var
function b = three_var(v)
x = v(1);
y = v(2);
z = v(3);
b = x.^2 + 2.5*sin(y) - z^2*x^2*y^2;
        现在,使用 x = -0.6 y = -1.2 z = 0.135 作为起始值求此函数的最小值。
v = [-0.6,-1.2,0.135];
a = fminsearch(@three_var,v)
a =
0.0000 -1.5708 0.1803

1.3 求函数最大值

        fminbnd fminsearch 求解器尝试求目标函数的最小值。如果您有最大化问题,即以下形式的问题:
        然后定义 g(x) = –f(x),并对 g 取最小值。
        例如,要计算 tan(cos(x)) 在 x = 5 附近的最大值,请计算:
[x fval] = fminbnd(@(x)-tan(cos(x)),3,8)
x =
6.2832
fval =
-1.5574
        最大值为 1.5574(报告的 fval 的负值),并出现在 x = 6.2832。此答案是正确的,因为最大值为 tan(1)= 1.5574(最多五位数),该值出现在 x = 2π = 6.2832 位置。

1.4 fminsearch 算法

        fminsearch 使用 Lagarias 等人的著作 [1] 中所述的 Nelder-Mead 单纯形算法。此算法对 n 维向量 x 使用 n + 1 个点组成的单纯形。此算法首先向 x 0 添加各分量 x 0 (i) 的 5%,以围绕初始估计值 x 0 生成一个单纯形。然后,该算法使用上述 n 个向量作为单纯形的除 x 0 之外的元素。(如果 x0 (i) = 0,则算法使用0.00025 作为分量 i)。然后,此算法按照以下过程反复修改单纯形。 注意 fminsearch 迭代输出方式中的关键字在相应的步骤说明后以 粗体 形式显示。
        步骤1 用 x(i) 表示当前单纯形中的点列表 i = 1,...,n + 1。
        步骤2 按最小函数值 f(x(1)) 到最大函数值 f(x(n + 1)) 的顺序对单纯形中的点进行排序。在迭代的每个步骤 中,此算法都会放弃当前的最差点 x(n + 1) 并接受单纯形中的另一个点。[或者在下面的步骤 7 中,此算法会更改值在 f(x(1)) 上方的所有 n 个点。]
        步骤3 生成反射点
        r = 2m – x(n + 1),                                                                                                         (9-1)
其中
        m = Σx(i)/n, i = 1...n,                                                                                                     (9-2)
并计算 f(r)。
        步骤4 如果 f(x(1)) ≤ f(r) < f(x(n)),则接受 r 并终止此迭代。 反射
        步骤5 如果 f(r) < f(x(1)),则计算延伸点 s
        s = m + 2(m – x(n + 1)),                                                                                                (9-3)
并计算 f(s)。
        a 如果 f(s) < f(r),接受 s 并终止迭代。 扩展
        b 否则,接受 r 并终止迭代。 反射
        步骤6 如果 f(r) ≥ f(x(n)),则在 m 和 x(n + 1) 或 r(取目标函数值较低者)之间执行收缩。
        a 如果 f(r) < f(x(n + 1))(即 r 优于 x(n + 1)),则计算
        c = m + (r – m)/2                                                                                                              (9-4)
并计算 f(c)。如果 f(c) < f(r),则接受 c 并终止迭代。 外收缩
否则,继续执行步骤 7(收缩)。
        b 如果 f(r) ≥ f(x(n + 1)),则计算
        cc = m + (x(n + 1) – m)/2                                                                                                 (9-5)
        并计算 f(cc)。如果 f(cc) < f(x(n + 1)),则接受 cc 并终止迭代。内收缩
        否则,继续执行步骤 7(收缩)。
        步骤7 计算 n 点
        v(i) = x(1) + (x(i) – x(1))/2                                                                                                 (9-6)
        并计算 f(v(i)),i = 2,...,n + 1。下一迭代中的单纯形为 x(1), v(2),...,v(n + 1)。收缩
        下图显示了 fminsearch 可在此过程中计算的点以及每种可能的新单纯形。原始单纯形采用粗体边框。迭代将在符合停止条件之前继续运行。

2.非线性函数的数据拟合 

        此示例说明如何使用非线性函数对数据进行拟合。在本示例中,非线性函数是标准指数衰减曲线
y ( t ) = A exp( − λt ),
        其中,y ( t ) 是时间 t 时的响应, A λ 是要拟合的参数。对曲线进行拟合是指找出能够使误差平方和最小化的参数 A λ
        ∑(i=1→n) [y i A exp( − λt i )]^ 2 ,
        其中,时间为 t i ,响应为 y i , i = 1, …, n 。误差平方和为目标函数。

2.1 创建样本数据

        通常,您要通过测量获得数据。在此示例中,请基于 A = 40 λ = 0 . 5 且带正态分布伪随机误差的模型创建人工数据。
rng default % for reproducibility
tdata = 0:0.1:10;
ydata = 40*exp(-0.5*tdata) + randn(size(tdata));

2.2 编写目标函数

        编写一个函数,该函数可接受参数 A lambda 以及数据 tdata ydata ,并返回模型 y ( t ) 的误差平方和。将要优化的所有变量( A lambda )置入单个向量变量 ( x)。
type sseval
function sse = sseval(x,tdata,ydata)
A = x(1);
lambda = x(2);
sse = sum((ydata - A*exp(-lambda*tdata)).^2);
        将此目标函数保存为 MATLAB® 路径上名为 sseval.m 的文件。fminsearch 求解器适用于一个变量 x 的函数。但 sseval 函数包含三个变量。额外变量 tdata ydata 不是要优化的变量,而是用于优化的数据。将 fminsearch 的目标函数定义为仅含有一个变量 x 的函数:
fun = @(x)sseval(x,tdata,ydata);
有关包括额外参数(例如 tdata ydata )的信息,请参阅“参数化函数” 。

2.3 求最优拟合参数

        从随机正参数集 x0 开始,使用 fminsearch 求使得目标函数值最小的参数。
x0 = rand(2,1);
bestx = fminsearch(fun,x0)
bestx = 2×1
40.6877
0.4984
        结果 bestx 与生成数据的参数 A = 40 lambda = 0.5 相当接近。

2.4 检查拟合质量

        要检查拟合质量,请绘制数据和生成的拟合响应曲线。根据返回的模型参数创建响应曲线。
A = bestx(1);
lambda = bestx(2);
yfit = A*exp(-lambda*tdata);
plot(tdata,ydata,'*');
hold on
plot(tdata,yfit,'r');
xlabel('tdata')
ylabel('Response Data and Curve')
title('Data and Best Fitting Exponential Curve')
legend('Data','Fitted Curve')
hold off

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102599.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于ios Universal Links apple-app-site-association文件 Not Found的问题

1. 背景说明 1.1 Universal Links 是什么 Support Universal Links 里面有说到 Universal Links 是什么、注意点、以及如何配置的。简单来说就是 当您支持通用链接时&#xff0c;iOS 用户可以点击指向您网站的链接&#xff0c;并无缝重定向到您安装的应用程序 大白话就是说&am…

oracle警告日志\跟踪日志磁盘空间清理

oracle警告日志\跟踪日志磁盘空间清理 问题现象&#xff1a; 通过查看排查到alert和tarce占用大量磁盘空间 警告日志 /u01/app/oracle/diag/rdbms/orcl/orcl/alert 跟踪日志 /u01/app/oracle/diag/rdbms/orcl/orcl/trace 解决方案&#xff1a; 用adrci清除日志 确定目…

如何评价国内的低代码开发平台(apaas)?

什么是低代码&#xff1f;低代码平台有什么价值&#xff1f;低代码开发到底能适应多广泛场景&#xff1f;低代码到底能做出多么复杂的应用&#xff1f;低代码平台应该如何筛选&#xff1f; 在低代码重新火爆的今天&#xff0c;我们又该如何利用低代码&#xff1f; 01 什么是a…

Java学习笔记38

Java笔记38 注解 什么是注解 Annotation是从 JDK 5.0 开始引入的新技术。Annotation的作用︰ 不是程序本身&#xff0c;可以对程序作出解释。&#xff08;这一点和注释 - comment没什么区别&#xff09;可以被其他程序&#xff08;比如编译器等&#xff09;读取。 Annotatio…

多个微信号怎么快速发圈、自动加好友、自动回复?

一键助你快速发圈、批量自动加好友、自动回复&#xff0c;好用哭了&#xff01; 微信管理系统是一个聚合管理多个微信账号的利器&#xff0c;让你的微信管理变得简单高效。不管你是电商、微商&#xff0c;还是拥有多个微信号的用户&#xff0c;这一款微信管理软件都可以满足你的…

Linux系统之安装OneNav个人书签管理器

Linux系统之安装OneNav个人书签管理器 一、OneNav介绍1.OneNav简介2.OneNav特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本3.3 检查本地yum仓库状态 四、安装httpd服务4.1 安装httpd4.2 启动httpd服务4…

解决charles无法抓取localhost数据包

我们有时候在本地调试的时候&#xff0c;使用charles抓取向本地服务发送的请求的&#xff0c;发现无法抓取。 charles官方也作了相应说明&#xff1a; 大概意思就是 某些系统使用的是硬编码不能使用localhost进行传输&#xff0c;所以当我们连接到 localhost的时候&#xff0c…

MySQL数据库:内置函数

日期函数 规定&#xff1a;日期&#xff1a;年月日 时间&#xff1a;时分秒 函数名称作用描述current_date()当前日期current_time()当前时间current_timestamp()当前时间戳date(datetime)返回datetime参数的日期部分date_add(date,interval d_value_type)在date中添加…

C++笔记之虚函数重写规则、返回类型协变、函数的隐藏

C笔记之虚函数重写规则、返回类型协变、函数的隐藏 code review! 文章目录 C笔记之虚函数重写规则、返回类型协变、函数的隐藏1.返回类型协变2.C中函数的隐藏 —— C Primer Plus &#xff08;第6版&#xff09; —— cppreference 1.返回类型协变 2.C中函数的隐藏 在C中&a…

【探索C++】string类:更强大的字符串处理

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言&#xff0c;Linux基础&#xff0c;ARM开发板&#xff0c;软件配置等领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff01;送给自己和读者的…

Linux系统安全:NAT(SNAT、DNAT)

目录 一.NAT 二.SNAT 三.DNAT 一.NAT NAT: network address translation&#xff0c;支持PREROUTING&#xff0c;INPUT&#xff0c;OUTPUT&#xff0c;POSTROUTING四个链 请求报文&#xff1a;修改源/目标IP&#xff0c; 响应报文&#xff1a;修改源/目标IP&#xff0c;根据…

【Unity3D赛车游戏】【二】如何制作一个真实模拟的汽车

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;Uni…

[LeetCode111双周赛LeetCode359周赛] DP双指针

参考灵神和闫总的讲解和代码&#xff1a; https://www.bilibili.com/video/BV1rP411s7Z5 https://space.bilibili.com/206214 7006. 销售利润最大化 https://leetcode.cn/problems/maximize-the-profit-as-the-salesman/ Solution 动态规划 哈希表 首先按照 end 的顺序分…

计算CRC16出现两次计算结果不同的问题

传入CRC计算函数的原始数据和长度是一样的&#xff0c;但是前后两次计算的结果竟然不一样。 开发环境是KEIL5&#xff0c;mcu是一个2K/4K SRAM的M0内核的单片机。 找了半天原因&#xff0c;还计算了一下堆栈&#xff1a; 目前在优化等级为-O2时&#xff0c;程序占用flash大小…

【FM-CW雷达】一种通信系统技术——调频连续波信号(FM-CW)(Simulink实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

人事变动?前沃尔沃汽车大中华区总裁钦培吉将加盟吉利

根据消息&#xff0c;吉利控股集团高级副总裁杨学良在今天上午通过微博宣布&#xff0c;前沃尔沃汽车大中华区总裁钦培吉将加盟吉利。钦培吉将担任吉利汽车集团销售公司副总经理&#xff0c;并负责集团渠道发展委员会的主任一职&#xff0c;向吉利汽车集团的高级副总裁林杰报告…

C#生产流程控制(串行,并行混合执行)

开源框架CsGo https://gitee.com/hamasm/CsGo?_fromgitee_search 文档资料&#xff1a; https://blog.csdn.net/aa2528877987/article/details/132139337 实现效果 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37…

【通俗易懂】如何使用GitHub上传文件,如何用git在github上传文件

目录 创建 GitHub 仓库 使用 Git 进行操作 步骤 1&#xff1a;初始化本地仓库 步骤 2&#xff1a;切换默认分支 步骤 3&#xff1a;连接到远程仓库 步骤 4&#xff1a;获取远程更改 步骤 5&#xff1a;添加文件到暂存区 步骤 6&#xff1a;提交更改 步骤 7&#xff1a…

Spring框架中JavaBean的生命周期及单例模式与多列模式

Spring框架中JavaBean的生命周期及单例模式与多列模式 1. Spring框架中JavaBean的管理过程1.1 #定义Bean1.2 Bean的实例化1.3 属性注入1.4 初始化方法1.5 Bean的使用和引用1.6 销毁方法 2. 单例模式与原型模式在JavaBean管理中的应用1.在Spring管理JavaBean的过程中&#xff0c…

java八股文面试[数据结构]——ArrayList和LinkedList区别

ArrayList和LinkedList的异同 二者的线程都不安全&#xff0c;相对线程安全的Vector,执行效率高。此外&#xff0c;ArrayList时实现了基于动态数组的数据结构&#xff0c;LinkedList基于链表的数据结构&#xff0c;对于随机访问get和set&#xff0c;ArrayList觉得优于LinkedLis…