LLM 生成式配置的推理参数温度 top k tokens等 Generative configuration inference parameters

在这个视频中,你将了解一些方法和相关的配置参数,这些参数可以用来影响模型在下一个词生成时的最终决策方式。如果你在Hugging Face网站或AWS的游乐场中使用过LLMs,你可能已经看到了这些控制选项,用来调整LLM的行为。每个模型都暴露了一组配置参数,可以在推断过程中影响模型的输出。
在这里插入图片描述

请注意,这些参数与训练参数不同,训练参数是在训练时学习的。相反,这些配置参数是在推断时调用的,允许你控制完成中的最大令牌数
在这里插入图片描述

和输出的创意程度。
在这里插入图片描述

Max new tokens可能是这些参数中最简单的,你可以使用它来限制模型生成的令牌数。你可以将其视为限制模型经历选择过程的次数。
在这里插入图片描述

这里你可以看到max new tokens设置为100、150或200的示例。但请注意,200的示例中完成的长度较短。这是因为达到了另一个停止条件,例如模型预测了序列结束令牌。请记住,这是最大的新令牌,而不是生成的新令牌的硬数字。
在这里插入图片描述

Transformers的softmax层的输出是模型使用的整个词典上的概率分布。这里你可以看到一些单词及其旁边的概率分数。尽管我们这里只显示了四个单词,但想象一下,这是一个继续到完整词典的列表。
在这里插入图片描述

大多数大型语言模型默认使用所谓的贪婪解码。这是下一个词预测的最简单形式,模型总是选择概率最高的词。这种方法对于短期生成效果很好,但容易重复单词或重复单词序列。如果你想生成更自然、更有创意且避免重复单词的文本,你需要使用其他控制。随机采样是引入一些变化的最简单方法。与随机采样不同,模型不是每次都选择最可能的词,而是使用概率分布对输出词进行随机选择。例如,在插图中,单词banana的概率分数为0.02。使用随机采样,这相当于这个词被选择的概率为2%。使用这种采样技术,我们减少了单词重复的可能性。
在这里插入图片描述

然而,根据设置,可能会产生过于创意的输出,产生导致生成偏离主题或根本没有意义的单词。请注意,在某些实现中,你可能需要显式地禁用贪婪并启用随机采样。例如,我们在实验室中使用的Hugging Face Transformers实现要求我们将do sample设置为true。让我们探索top k和top p采样技术,以帮助限制随机采样并增加输出合理的机会。
在这里插入图片描述

为了限制选项,同时仍允许一些变化,你可以指定一个top k值,该值指示模型只从概率最高的k个令牌中选择。在这里的示例中,k设置为三,所以你限制模型只从这三个选项中选择。然后,模型使用概率加权选择这些选项,在这种情况下,它选择甜甜圈作为下一个词。这种方法可以帮助模型有一些随机性,同时防止选择高度不可能的完成词。
在这里插入图片描述

这反过来使得你的文本生成更有可能听起来合理并有意义。或者,你可以使用top p设置来限制随机采样,只对其组合概率不超过p的预测进行采样。例如,如果你将p设置为0.3,选项是蛋糕和甜甜圈,因为它们的概率为0.2和0.1,加起来为0.3。然后,模型使用随机概率加权方法从这些令牌中选择。
在这里插入图片描述

使用top k,你指定要随机选择的令牌数,使用top p,你指定你希望模型选择的总概率。

你还可以使用一个称为温度的参数来控制模型输出的随机性。这个参数影响模型为下一个令牌计算的概率分布的形状。
在这里插入图片描述

大致说来,温度越高,随机性越高,温度越低,随机性越低。温度值是应用于模型的最终softmax层的缩放因子,影响下一个令牌的概率分布的形状。与top k和top p参数相反,改变温度实际上会改变模型的预测。如果你选择一个低的温度值,比如小于1,那么从softmax层得到的概率分布将更强烈地峰值,概率将集中在较少的单词上。你可以在这里看到这一点,在表旁边的蓝色条上,显示了一个概率条形图。大部分的概率都集中在单词cake上。模型将使用随机采样从这个分布中选择,生成的文本将不那么随机,并且更接近模型在训练期间学到的最可能的词序列。相反,如果你将温度设置为一个较高的值,比如大于1,那么模型将计算下一个令牌的更广泛、更平坦的概率分布。注意,与蓝色条相比,概率在令牌上更均匀地分布。
在这里插入图片描述

这使得模型生成文本具有更高的随机性和与冷温度设置相比的输出变化性。这可以帮助你生成听起来更有创意的文本。如果你将温度值设置为1,这将使softmax函数保持默认状态,将使用未更改的概率分布。

你已经涵盖了很多内容。你已经检查了LLMs能够执行的任务类型,并了解了Transformers,这是驱动这些惊人工具的模型架构。你还探索了如何使用提示工程和通过尝试不同的推断配置参数来从这些模型中获得最佳性能。

在下一个视频中,你将开始在这个基础知识上建立,思考开发和启动Transformers-powered应用程序所需的步骤。

参考

https://www.coursera.org/learn/generative-ai-with-llms/lecture/18SPI/generative-configuration

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102647.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数据库】表操作 习题总结

目录 关系建表 数据库sql的执行顺序 内外连接的写法 1.设计一张商品表 2.设计一张老师表 3.设计一张图书表 4.查询练习 5.查询练习 6.设计一个考勤系统 7.设计一个学校宿舍管理系统 8.设计一个车辆违章系统 9.设计一个学校食堂管理系统 10.有一张员工表emp&#xf…

AWS SDK 3.x for .NET Framework 4.0 可行性测试

前言 为了应对日益增长的网络安全挑战, 越来越多的互联网厂商已经陆续开始或者已经彻底停止了对 SSL 3 / TLS 1.0 / TLS1.1 等上古加密算法的支持. 而对于一些同样拥有悠久历史的和 AWS 服务相关联的应用程序, 是否可以通过仅更新 SDK 版本的方式来适应新的环境. 本文将以 Win…

前端处理图片文件的方法

在项目开发过程中&#xff0c;有一个需求&#xff0c;需要前端对上传的图片进行处理&#xff0c;以字符串的形式传给后端&#xff0c;实现效果如下&#xff1a; 1.上传图片的组件 在该项目中&#xff0c;使用了element plus组件库 <el-uploadv-model:file-list"fileL…

2023年目标检测研究进展

综述 首先关于写这个笔记&#xff0c;我个人思考了很久关于以下几点。1&#xff1a;19年开始从做OCR用到图像和文本这种多模态联合处理的后&#xff0c;也就有意识的开始关注自然语言处理&#xff0c;这样的结果导致可能停留在前期图像上的学习和实践&#xff0c;停滞的研究如…

17万字数字化医院信息化建设大数据平台建设方案WORD

导读&#xff1a;原文《17万字数字化医院信息化建设大数据平台建设方案WORD》&#xff08;获取来源见文尾&#xff09;&#xff0c;本文精选其中精华及架构部分&#xff0c;逻辑清晰、内容完整&#xff0c;为快速形成售前方案提供参考。 目录 第1章 医院信息化概述 1.1 国内…

【开发】视频云存储EasyCVR视频汇聚平台AI智能算法定制

安防视频集中存储EasyCVR视频汇聚平台&#xff0c;可支持海量视频的轻量化接入与汇聚管理。平台能提供视频存储磁盘阵列、视频监控直播、视频轮播、视频录像、云存储、回放与检索、智能告警、服务器集群、语音对讲、云台控制、电子地图、平台级联、H.265自动转码等功能。为了便…

2023国赛数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 最短时…

Log4j反序列化命令执行漏洞(CVE-2017-5645)Apache Log4j2 lookup JNDI 注入漏洞(CVE-2021-44228)

一.Log4j反序列化命令执行漏洞(CVE-2017-5645&#xff09; Apache Log4j是一个用于Java的日志记录库&#xff0c;其支持启动远程日志服务器。Apache Log4j 2.8.2之前的2.x版本中存在安全漏洞。攻击者可利用该漏洞执行任意代码 环境&#xff1a;vulhub 工具下载地址&#xff1…

Oracle Database12c数据库官网下载和安装教程

文章目录 下载安装Oracle自带的客户端工具使用 下载 进入oracle官网 点击下载连接之后右上角会有一个下载 我们只需要数据库本体就够了 运行这个下载器 等待下好之后即可 出现 Complete 之后代表下载成功&#xff0c;然后我们解压即可 安装 双击 双击setup.exe 根据…

opencv进阶09-视频处理cv2.VideoCapture示例(打开本机电脑摄像头)

视频信号&#xff08;以下简称为视频&#xff09;是非常重要的视觉信息来源&#xff0c;它是视觉处理过程中经常要处理的一类信号。实际上&#xff0c;视频是由一系列图像构成的&#xff0c;这一系列图像被称为帧&#xff0c;帧是以固定的时间间隔从视频中获取的。获取&#xf…

在C中使用Socket实现多线程异步TCP消息发送

目录 基础知识开始实现主要函数说明结束语 在本篇文章中&#xff0c;我们会探讨如何在C语言中使用socket来实现多线程&#xff0c;异步发送TCP消息的系统。虽然C标准库并没有原生支持异步和多线程编程&#xff0c;但是我们可以结合使用POSIX线程&#xff08;pthread&#xff09…

【⑬MySQL | 数据类型(一)】简介 | 整数 | 浮点 | 定点类型

前言 ✨欢迎来到小K的MySQL专栏&#xff0c;本节将为大家带来MySQL数据类型简介 | 整数 | 浮点 | 定点类型的分享✨ 目录 前言0.数据类型简介1 整数类型2 浮点类型3 定点类型4 日期/时间类型总结 0.数据类型简介 数据类型&#xff08;data_type&#xff09;是指系统中所允许的…

学会Mybatis框架:让你的代码更具灵活性、可维护性、安全性和高效性【二.动态SQL】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Mybatis的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.Mybatis动态SQL如何应用 1.需求 2.…

Win解答 | 解决键盘中 字母+空格 导致的输入法弹窗导致的一系列问题

近三个月来&#xff0c;一直都有一个键盘组合键的问题影响我的电脑使用&#xff0c;不管是打字还是打游戏&#xff0c;都会出现按键盘的 字母空格 弹出一个特殊符号的候选框&#xff0c;如下图所示 图片中为 S空格 所出现的弹窗 一个看似方便&#xff0c;实则难受的功能 其实打…

针对论坛系统进行功能测试和性能测试

项目链接:飞鸽论坛 目录 一. 项目背景 二. 项目功能 三. 功能测试 注册: 登录: 更改用户信息: 发布帖子: 更新帖子信息: 点赞: 评论: 发送私信: 测试报告 四. 性能测试 Virtual User Generator Controller Analysis 测试报告: 一. 项目背景 该论坛系统采用前…

JMeter使用方法

一、基础简介 界面 打开方式 双击 jmeter.bat双击 ApacheJMeter.jsr命令行输入 java -jar ApacheJMeter.jar 目录 BIN 目录&#xff1a;存放可执行文件和配置文件 docs目录&#xff1a;api文档&#xff0c;用于开发扩展组件 printable-docs目录&#xff1a;用户帮助手册 li…

【NEW】视频云存储EasyCVR平台H.265转码配置增加分辨率设置

关于视频分析EasyCVR视频汇聚平台的转码功能&#xff0c;我们在此前的文章中也介绍过不少&#xff0c;感兴趣的用户可以翻阅往期的文章进行了解。 安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各…

C语言刷题(13)

第一题 第二题 第三题 第四题 第五题 第六题 第七题 注意 1.nsqrt(n)&#xff0c;sqrt本身不会将n开根 2.初始化已经令sumn了&#xff0c;故相加的个数为m-1次

【业务功能篇74】三高微服务项目springboot-springcloud

三高指的是&#xff1a;高性能、高并发、高可用 2.项目架构 2.1 系统架构图 整体的项目架构图如下 2.2 业务组成 整体的项目业务组成如下

【Prometheus】概述及部署

目录 Prometheus 概述 Prometheus 的生态组件 Prometheus 的工作模式 Prometheus 的工作流程 Prometheus 的局限性 部署 Prometheus Prometheust Server 端安装和相关配置 部署 Exporters 监控 MySQL 配置示例 监控 Nginx 配置示例 部署 Grafana 进行展示 部署 Pro…