Ubuntu20.04搭建OpenGL环境(glfw+glad)

Ubuntu20.04搭建OpenGL环境(glfw+glad)

Linux环境搭建

本文在VMware安装Ubuntu20.04桌面版的环境下搭建OpenGL,按照本文搭建完成后可以执行LearnOpenGL网站上的demo

关于VMware可自行到VMware Workstation Pro | CN下载

关于Ubuntu20.04桌面版可自行到官网或Index of /ubuntu-releases/20.04.6/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror下载

这里窗口系统是X11,如果最新版Ubuntu窗口系统应该是Wayland那配置方法可能有所差异,没有实测过。

在这里插入图片描述

啰嗦几句基操~

关于虚拟机和物理机的通信:

可以采用scp命令或建立共享文件夹的方式。

关于建立共享文件夹的几个步骤:

  • 在编辑虚拟机设置里选择一个共享文件夹

在这里插入图片描述

  • 在开启虚拟机的瞬间,不断点击选项栏的虚拟机,直到刷出安装VMware Tools是可以点击的状态,然后点击安装。
  • 进入虚拟机后/mnt/hgfs在这个目录下会发现和物理机的共享文件夹

正文开始

安装g++

sudo apt install g++

安装mesa工具

sudo apt install mesa-utils

查看opengl的版本

glxinfo -B | grep 'OpenGL version string'

得到  `OpenGL version string: 4.1 (Compatibility Profile) Mesa 21.2.6`  字样,我们记住自己的版本号,我的是4.1

安装xorg依赖(GLFW的依赖)

sudo apt install xorg-dev

下载glfw源码进行编译

git clone https://github.com/glfw/glfw
cd glfw
cmake -S . -B build
cd build
make
sudo make install

安装GLAD

登录到GLAD官网,点这里。只需要把API中gl的版本设置成我们刚才查看的版本即可(作者是4.1)。最后点击GENERATE

这时浏览器会跳至文件页,我们把glad.zip文件保存到本地并解压。

解压之后得到一个include目录,和一个src目录

我们首先把include这个目录里的内容移动到标准头目录下,sudo mv include/* /usr/local/include

src目录下有个glad.c文件我们需要把他放到项目文件中,一会再弄!

创建项目

mkdir opengl_code
cd opengl_code
  • glad.c文件copy过来
  • 创建一个build目录 mkdir build
  • 创建CMakeLists.txt文件,并添加以下内容
cmake_minimum_required(VERSION 2.8)
set(CMAKE_C_STANDARD 11)
set(CMAKE_CXX_STANDARD 14)project(test)find_package(glfw3 REQUIRED)
find_package( OpenGL REQUIRED )
include_directories( ${OPENGL_INCLUDE_DIRS} )
file(GLOB project_file glad.c main.cpp)
add_executable(${PROJECT_NAME} ${project_file})target_link_libraries(${PROJECT_NAME}  ${OPENGL_LIBRARIES} glfw)
  • 创建main.cpp文件,并添加以下内容
#include <glad/glad.h>
#include <GLFW/glfw3.h>#include <iostream>void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;const char *vertexShaderSource = "#version 330 core\n" "layout (location = 0) in vec3 aPos;\n""void main()\n""{\n""   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" "}\0";
const char *fragmentShaderSource = "#version 330 core\n""out vec4 FragColor;\n""void main()\n""{\n""   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n""}\n\0";int main()
{// glfw: initialize and configureglfwInit();glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif// glfw window creationGLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);if (window == NULL){std::cout << "Failed to create GLFW window" << std::endl;glfwTerminate();return -1;}glfwMakeContextCurrent(window);glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);// glad: load all OpenGL function pointersif (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)){std::cout << "Failed to initialize GLAD" << std::endl;return -1;}// build and compile our shader program// ------------------------------------// vertex shaderint vertexShader = glCreateShader(GL_VERTEX_SHADER);glShaderSource(vertexShader, 1, &vertexShaderSource, NULL); glCompileShader(vertexShader);// check for shader compile errorsint success;char infoLog[512];glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;}// fragment shaderint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);glCompileShader(fragmentShader);// check for shader compile errorsglGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);if (!success){glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;}// link shadersint shaderProgram = glCreateProgram(); glAttachShader(shaderProgram, vertexShader); glAttachShader(shaderProgram, fragmentShader);glLinkProgram(shaderProgram);// check for linking errorsglGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);if (!success) {glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;}glDeleteShader(vertexShader);glDeleteShader(fragmentShader);float vertices[] = {-0.5f, -0.5f, 0.0f, // left  0.5f, -0.5f, 0.0f, // right 0.0f,  0.5f, 0.0f  // top   }; unsigned int VBO, VAO;glGenVertexArrays(1, &VAO);glBindVertexArray(VAO);glGenBuffers(1, &VBO);glBindBuffer(GL_ARRAY_BUFFER, VBO); glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0); glEnableVertexAttribArray(0);glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); // render loop// -----------while (!glfwWindowShouldClose(window)){// input// -----processInput(window);// render// ------glClearColor(0.2f, 0.3f, 0.3f, 1.0f);glClear(GL_COLOR_BUFFER_BIT);// draw our first triangleglUseProgram(shaderProgram); glBindVertexArray(VAO); glDrawArrays(GL_TRIANGLES, 0, 3); glfwSwapBuffers(window);glfwPollEvents();}// optional: de-allocate all resourcesglDeleteVertexArrays(1, &VAO);glDeleteBuffers(1, &VBO);glDeleteProgram(shaderProgram);glfwTerminate();return 0;
}void processInput(GLFWwindow *window)
{if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)glfwSetWindowShouldClose(window, true);
}void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{glViewport(0, 0, width, height);
}
  • 创建run.sh文件,并添加以下内容
cd build
cmake ..
make
./test
cd ..

完成

现在运行bash run.sh 即可执行OpneGL程序,效果如下:

在这里插入图片描述

PS

如果想通过gdb调试的话,那需要手动进行编译。

  • sudo apt-get install libglfw3-dev libgl1-mesa-dev

  • g++ -O0 -g glad.c main.cpp -lglfw3 -ldl -lGL -lpthread

这样就可以gdb a.out

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/102708.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

k8s简介、虚拟机快速搭建k8s集群、集群管理方式及K8S工作原理和组件介绍

文章目录 1、k8s简介1.1、部署方式的变迁1.2、定义1.3、Kubernetes提供的功能 2、虚拟机快速搭建k8s集群2.1、虚拟机配置&#xff08;centos7 2G内存2个处理器&#xff09;2.2、基础环境准备2.3、docker安装&#xff08;易踩坑&#xff09;2.4、安装k8s组件2.5、master节点部署…

Python搭建http文件服务器实现手机电脑文件传输功能

第一种代码的界面如下&#xff1a;&#xff08;有缺点&#xff0c;中文乱码&#xff09; # !/usr/bin/env python3 # -*- coding:utf-8 _*-"""Simple HTTP Server With Upload. python -V3.6 This module builds on http.server by implementing the standard G…

版本控制工具Git集成IDEA的学习笔记(第一篇Gitee)

目录 一、Gitee的使用 1、注册网站会员 2、用户中心 3、创建远程仓库 4、配置SSH免密登录 二、集成IDEA&#xff0c;Git项目搭建 1、本地仓库搭建 1&#xff09;创建一个新项目 2&#xff09;打开终端&#xff0c;在当前目录新建一个Git代码库 3&#xff09;忽略文件 …

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&a…

RabbitMQ笔记-RabbitMQ基本术语

RabbitMQ基本术语 相关概念; 生产者&#xff08;Producer&#xff09;&#xff1a;投递消息。消息&#xff1a;消息体&#xff08;payload&#xff09;标签&#xff08;label&#xff09;&#xff1b;生产者把消息交给rabbitmq&#xff0c;rabbitmq会根据标签把消息发给感兴趣…

SQL-每日一题【1587. 银行账户概要 II】

题目 表: Users 表: Transactions 编写解决方案, 报告余额高于 10000 的所有用户的名字和余额. 账户的余额等于包含该账户的所有交易的总和。 返回结果表单 无顺序要求 。 查询结果格式如下例所示。 示例 1&#xff1a; 解题思路 1.题目要求我们查询出额高于 10000 的所有…

使用高斯滤波器进行表面开放轮廓过滤研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【洁洁送书第五期】为什么我们要了解可观测性工程

导读 可观测性已成为一个热门话题&#xff0c;并广受关注。随着它的普及&#xff0c;“可观测性”不幸被误作“监控”或“系统遥测”的同义词。可观测性是软件系统的一个特征。而且&#xff0c;只有当团队采用新的实践进行持续开发时&#xff0c;才能在生产软件系统中有效利用这…

smiley-http-proxy-servlet 实现springboot 接口反向代理,站点代理,项目鉴权,安全的引入第三方项目服务

背景&#xff1a; 项目初期 和硬件集成&#xff0c;实现了些功能服务&#xff0c;由于是局域网环境&#xff0c;安全问题当时都可以最小化无视。随着对接的服务越来越多&#xff0c;部分功能上云&#xff0c;此时就需要有一种手段可以控制到其他项目/接口的访问权限。 无疑 反向…

API接口文档利器:Swagger 和 接口调试利器:Postman

2.接口相关工具 2.1API接口文档利器&#xff1a;Swagger 2.1.1Swagger介绍 Swagger 是一个规范和完整的框架&#xff0c;用于生成、描述、调用和可视化 RESTful 风格的 Web 服务 (https://swagger.io/)。 它的主要作用是&#xff1a; 使得前后端分离开发更加方便&#xff0…

分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测

分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测 目录 分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 分类预测 | MATLAB实现S4VM半监督支持向量机二分类预测 程序设计 完整源码和数据获取方式&#xff1a; …

低压风机单片机方案

低压风机通常由电机、转子、机壳、进气管、出气管、齿轮和减速机等组成。电机带动转子旋转&#xff0c;旋转的转子带动齿轮和减速机转动&#xff0c;进而形成空气被吸入转子内部&#xff0c;通过旋转而产生的离心力把气体压缩&#xff0c;并将气体排出。 低压风机方案的主控型…

c++ 友元 运算符重载详解

友元 c是面向对象的&#xff0c;目的之一&#xff1a;封装 封装&#xff1a; 优点之一&#xff0c;就是安全。 缺点&#xff1a;在某些特殊的场合&#xff0c;不是很方便。 华为与IBM 40亿的咨询故事 IBM需要对华为各级部门做深度咨询分析&#xff0c; 为了提高咨询效率&a…

【MyBatis】动态SQL > 重点:${...}和#{...}与resultMap和resultType的区别

目录 一、MyBatis动态sql 1.1 动态sql的作用 1.2 动态sql作用论证 1.2.1 条件判断&#xff1a;<if> 1.2.2 循环迭代&#xff1a;<foreach> 1.2.3 SQL片段重用 1.2.4 动态条件组合&#xff1a;<choose><when><otherwise> 1.2.5 <where…

无感部署 - 蓝绿部署、AB测试、灰度发布

蓝绿部署 蓝绿部署&#xff08;Blue-Green Deployment&#xff09;是一种软件发布和部署的策略&#xff0c;旨在实现无缝的应用程序升级和回滚。在蓝绿部署中&#xff0c;同时存在两个环境&#xff1a;一个是当前稳定的生产环境&#xff08;蓝色环境&#xff09;&#xff0c;另…

设计模式(9)建造者模式

一、 1、概念&#xff1a;将一个复杂对象的构造与它的表示分离&#xff0c;使得同样的构造过程可以创建不同的表示。建造者模式主要用于创建一些复杂的对象&#xff0c;这些对象内部构建间的顺序通常是稳定的&#xff0c;但对象内部的构建通常面临着复杂的变化&#xff1b;建造…

LSTM模型

目录 LSTM模型 LSTM结构图 LSTM的核心思想 细胞状态 遗忘门 输入门 输出门 RNN模型 LRNN LSTM模型 什么是LSTM模型 LSTM (Long Short-Term Memory)也称长短时记忆结构,它是传统RNN的变体,与经典RNN相比能够有效捕捉长序列之间的语义关联,缓解梯度消失或爆炸现象.同时LS…

无涯教程-PHP - preg_split()函数

preg_split() - 语法 array preg_split (string pattern, string string [, int limit [, int flags]]); preg_split()函数的操作与split()完全相同&#xff0c;只不过正则表达式被接受为pattern的输入参数。 如果指定了可选的输入参数limit&#xff0c;则仅返回子字符串的限…

解决SEGGER Embedded Studio无法显示Nordic MCU外设寄存器问题

如果使用SES调试NRF52840的时候发现&#xff0c;官方例程只能显示CPU寄存器&#xff0c;但是无法显示外设寄存器时&#xff0c;解决办法如下&#xff1a; 1.在解决方案右键→Options→Debug→Debugger&#xff0c;然后Target Device选择正确的型号。 2.Register Definition Fil…

窗口看门狗

从下往上看: 1. 时钟设置 RCC_APB1PeriphClockCmd(RCC_APB1Periph_WWDG,ENABLE);//使能独立看门狗时钟 WWDG_SetPrescaler(WWDG_Prescaler_8);//看门狗预分频器WWDG counter clock (PCLK1/4096)/8 2.设置窗口值 实际就是设置WWDG_CR的低七位值, 但是这个值要大于0x40(也就是…