​​【项目实战】犬只牵绳智能识别:源码详细解读与部署步骤

1.识别效果展示

2.png

3.png

2.视频演示

[YOLOv7]基于YOLOv7的犬只牵绳检测系统(源码&部署教程)_哔哩哔哩_bilibili

3.YOLOv7算法简介

YOLOv7 在 5 FPS 到 160 FPS 范围内,速度和精度都超过了所有已知的目标检测器

并在 V100 上,30 FPS 的情况下达到实时目标检测器的最高精度 56.8% AP。YOLOv7 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。
相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。
5.png

此外, YOLOv7 的在速度和精度上的表现也优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR 等多种目标检测器。

4.YOLOv7 技术方法

近年来,实时目标检测器仍在针对不同的边缘设备进行开发。例如,MCUNet 和 NanoDet 的开发专注于生产低功耗单芯片并提高边缘 CPU 的推理速度;YOLOX、YOLOR 等方法专注于提高各种 GPU 的推理速度;实时目标检测器的发展集中在高效架构的设计上;在 CPU 上使用的实时目标检测器的设计主要基于 MobileNet、ShuffleNet 或 GhostNet;为 GPU 开发的实时目标检测器则大多使用 ResNet、DarkNet 或 DLA,并使用 CSPNet 策略来优化架构。

YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

对于模型重参数化,该研究使用梯度传播路径的概念分析了适用于不同网络层的模型重参数化策略,并提出了有计划的重参数化模型。此外,研究者发现使用动态标签分配技术时,具有多个输出层的模型在训练时会产生新的问题:「如何为不同分支的输出分配动态目标?」针对这个问题,研究者提出了一种新的标签分配方法,称为从粗粒度到细粒度(coarse-to-fine)的引导式标签分配。

该研究的主要贡献包括:

(1) 设计了几种可训练的 bag-of-freebies 方法,使得实时目标检测可以在不增加推理成本的情况下大大提高检测精度;

(2) 对于目标检测方法的演进,研究者发现了两个新问题:一是重参数化的模块如何替换原始模块,二是动态标签分配策略如何处理分配给不同输出层的问题,并提出了解决这两个问题的方法;

(3) 提出了实时目标检测器的「扩充(extend)」和「复合扩展(compound scale)」方法,以有效地利用参数和计算;

(4) 该研究提出的方法可以有效减少 SOTA 实时目标检测器约 40% 的参数和 50% 的计算量,并具有更快的推理速度和更高的检测精度。

在大多数关于设计高效架构的文献中,人们主要考虑的因素包括参数的数量、计算量和计算密度。下图 2(b)中 CSPVoVNet 的设计是 VoVNet 的变体。CSPVoVNet 的架构分析了梯度路径,以使不同层的权重能够学习更多不同的特征,使推理更快、更准确。图 2 © 中的 ELAN 则考虑了「如何设计一个高效网络」的问题。

YOLOv7 研究团队提出了基于 ELAN 的扩展 E-ELAN,其主要架构如图所示。
6.png
新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。

无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

在架构方面,E-ELAN 只改变了计算块的架构,而过渡层(transition layer)的架构完全没有改变。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。
因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提出图 (c),即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。

此外,该研究使用梯度流传播路径来分析如何重参数化卷积,以与不同的网络相结合。下图展示了该研究设计的用于 PlainNet 和 ResNet 的「计划重参数化卷积」。
7.png

5.数据集的准备

标注收集到的图片制作YOLO格式数据集

11.png
自己创建一个myself.yaml文件用来配置路径,路径格式与之前的V5、V6不同,只需要配置txt路径就可以
8.png

9.png
train-list.txt和val-list.txt文件里存放的都是图片的绝对路径(也可以放入相对路径)
12.png
如何获取图像的绝对路径,脚本写在下面了(也可以获取相对路径)

# From Mr. Dinosaurimport osdef listdir(path, list_name):  # 传入存储的listfor file in os.listdir(path):file_path = os.path.join(path, file)if os.path.isdir(file_path):listdir(file_path, list_name)else:list_name.append(file_path)list_name = []
path = 'D:/PythonProject/data/'  # 文件夹路径
listdir(path, list_name)
print(list_name)with open('./list.txt', 'w') as f:  # 要存入的txtwrite = ''for i in list_name:write = write + str(i) + '\n'f.write(write)

6.训练过程

运行train.py

train文件还是和V5一样,为了方便,我将需要用到的文件放在了根目录下
13.png

路径修改完之后右击运行即可
14.png

经过漫长的训练过程,YOLOv7相比YOLOv5训练更吃配置尤其是显存,实测GPU 3080ti训练长达40小时以上,建议电脑显存8G以下的谨慎尝试,可能训练的过程低配置的电脑会出现蓝屏等现象皆为显卡过载,使用本文提供的训练好的权重进行预测则不吃配置,CPU也能取得很好的预测结果且不会损伤电脑

7.测试验证

下面放上对比图:(上面V7,下面V5)
15.png

8.系统整合

完整源码&环境部署视频教程&数据集&自定义UI界面
1.png

参考博客《犬只牵绳检测系统(源码&部署教程)》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/200923.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python网络通信之基础知识填坑

文章目录 版权声明网络通信要素IP地址ifconfig和ping命令ifconfig (Interface Configuration)ping 端口和端口号的介绍端口号的分类socket介绍TCPTCP简介TCP的特点 UDPUDP简介UDP特点 版权声明 本博客的内容基于我个人学习黑马程序员课程的学习笔记整理而成。我特此声明&#…

腾讯云轻量数据库开箱测评,1核1G轻量数据库测试

腾讯云轻量数据库1核1G开箱测评,轻量数据库服务采用腾讯云自研的新一代云原生数据库TDSQL-C,轻量数据库兼100%兼容MySQL数据库,实现超百万级 QPS 的高吞吐,128TB海量分布式智能存储,虽然轻量数据库为单节点架构&#x…

C++项目案例圆和点的关系 (涉及知识点:头文件定义类,cpp文件实现类,类和作用域,linux编译运行c++项目)

一.项目描述 点与圆有三种关系&#xff1a; 点在圆外 点在圆上 点在圆内计算点到圆心的距离就能判断点在圆的哪个地方。二.项目结构 三.include文件 3.1 Circle类的声明 Circle.h // 防止头文件重复包含 #pragma once // #include<iostream> #include "Point.h&…

时间复杂度与空间复杂度

我们知道算法的效率分为时间效率和空间效率&#xff0c;接下来我们就对这两者进行讨论。 一.时间复杂度. 又被称为时间效率&#xff0c;主要反映一个算法的运行速度。 定义&#xff1a;计算机算法中&#xff0c;算法的时间复杂度是一个函数&#xff0c;它定量描述了该算法的…

在无回显的情况下如何判断是否存在命令注入漏洞

在无回显的情况下如何判断是否存在命令注入漏洞 这种情况下可以使用OOB带外来实现&#xff0c;言而简之&#xff0c;就是利用命令执行漏洞去解析我们的dns如果dns日志有记录那就说明存在命令注入漏洞 首先先简单搭建一个无回显的命令注入 <?phpexec($_REQUEST[777]); ?&…

使用sonar对webgoat进行静态扫描

安装sonar并配置 docker安装sonarqube&#xff0c;sonarQube静态代码扫描 - Joson6350 - 博客园 (cnblogs.com) 对webgoat进行sonar扫描 扫描结果 bugs Change this condition so that it does not always evaluate to "false" 意思是这里的else if语句不会执行…

前端字典的使用

这是data里的数据&#xff1a; 这是数据展示&#xff1a;

Vue2系列 -- 组件自动化全局注册(require.context)

参考官网&#xff1a;https://v2.cn.vuejs.org/v2/guide/components-registration.html 1 作用 省略 import 引入组件 省略 在main.js 中注册 实现自动化引入组件 2 自定义文件夹 在 src 下新建一个 components/base 文件夹&#xff0c;用于存放要自动注册的组件 3 在 base…

抖音seo短视频矩阵源码开发部署与维护--开源

一、引言 随着抖音等短视频平台的崛起&#xff0c;越来越多的企业和个人开始关注如何在这些平台上提升曝光量和用户流量。抖音SEO&#xff08;搜索引擎优化&#xff09;是一种有效的方法&#xff0c;通过优化短视频内容和关键词&#xff0c;让更多的人找到并点击你的视频。本文…

openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值

文章目录 openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值129.1 操作步骤129.2 示例 openGauss学习笔记-129 openGauss 数据库管理-参数设置-查看参数值 openGauss安装后&#xff0c;有一套默认的运行参数&#xff0c;为了使openGauss与业务的配合度更高&…

.NET 8.0 AOT 教程 和使用 和 .NET ORM 操作

NET AOT编译是一种.NET运行时的编译方式&#xff0c;它与传统的JIT编译方式不同。在传统的JIT编译中&#xff0c;.NET应用程序的代码在运行时才会被编译成本地机器码&#xff0c;而在AOT编译中&#xff0c;代码在运行之前就被提前编译成本地机器码。这样可以在代码运行的时候不…

JetLinks设备接入的认识与理解【woodwhales.cn】

为了更好的阅读体验&#xff0c;建议移步至笔者的博客阅读&#xff1a;JetLinks设备接入的认识与理解 1、认识 JetLinks 1.1、官网文档 官网&#xff1a;https://www.jetlinks.cn/ JetLinks 有两个产品&#xff1a;JetLinks-lot和JetLinks-view 官方文档&#xff1a; JetLi…

系列六、ThreadLocal内存泄露案例

一、ThreadLocal内存泄露案例 /*** Author : 一叶浮萍归大海* Date: 2023/11/22 10:56* Description: 写一段代码导致内存泄露* VM Options&#xff1a;-Xms20m -Xmx20m -Xmn10m -XX:PrintGCDetails* 说明&#xff1a;内存泄露最终会导致内存溢出*/ public class ThreadLocalO…

【Docker】从零开始:3.Docker运行原理

【Docker】从零开始&#xff1a;3.Docker运行原理 Docker 工作原理Docker与系统的关系Docker平台架构图解 Docker 工作原理 Docker与系统的关系 Docker 是一个 Client-Server 结构的系统&#xff0c;Docker 守尹进程运行在王机上&#xff0c; 然后通过 Socket 连接从各尸端坊…

赛氪荣幸受邀参与中国联合国采购促进会第五次会员代表大会

11 月21 日 &#xff08;星期二&#xff09; 下午14:00&#xff0c;在北京市朝阳区定福庄东街1号中国传媒大学&#xff0c;赛氪荣幸参与中国联合国采购促进会第五次会员代表大会。 2022年以来&#xff0c;联合国采购杯全国大学生英语大赛已经走上了国际舞台&#xff0c;共有来自…

CleanMyMac X4.16免费版mac电脑一键清理电脑垃圾工具

但是&#xff0c;我最近发现随着使用时间的增加&#xff0c;一些奇奇怪怪的文件开始占据有限的磁盘空间&#xff0c;存储空间变得越来越小&#xff0c;系统占用空间越来越大&#xff0c;越来越多的无效文件开始影响我电脑的运行速度。 Mac的文件管理方式和Windows不太一样&…

【Django使用】4大模块50页md文档,第4篇:Django请求与响应和cookie与session

当你考虑开发现代化、高效且可扩展的网站和Web应用时&#xff0c;Django是一个强大的选择。Django是一个流行的开源Python Web框架&#xff0c;它提供了一个坚实的基础&#xff0c;帮助开发者快速构建功能丰富且高度定制的Web应用 Django全套笔记地址&#xff1a; 请移步这里 …

代码随想录算法训练营|五十九~六十天

下一个更大元素|| 503. 下一个更大元素 II - 力扣&#xff08;LeetCode&#xff09; 和每日温度一样的套路&#xff0c;就是这里可以循环数组&#xff0c;两个数组拼接&#xff0c;然后循环两遍就行。 public class Solution {public int[] NextGreaterElements(int[] nums)…

redis之主从复制和哨兵模式

&#xff08;一&#xff09;redis的性能管理 1、redis的数据缓存在内存中 2、查看redis的性能&#xff1a;info memory&#xff08;重点&#xff09; used_memory:904192&#xff08;单位字节&#xff09; redis中数据占用的内存 used_memory_rss:10522624 redis向操作系统…

asp.net mvc点餐系统餐厅管理系统

1. 主要功能 ① 管理员、收银员、厨师的登录 ② 管理员查看、添加、删除菜品类型 ③ 管理员查看、添加、删除菜品&#xff0c;对菜品信息进行简介和封面的修改 ④ 收银员浏览、搜索菜品&#xff0c;加入购物车后进行结算&#xff0c;生成订单 ⑤ 厨师查看待完成菜品信息…