YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析

前言:Hello大家好,我是小哥谈。NMS是指非极大值抑制(non maximum suppression),它是一种常用于物体检测任务的算法。在物体检测中,通常会有多个预测框(bounding box)被提议出来,并且这些框可能存在重叠或者重复的情况。NMS的目的就是通过抑制非极大值的方式,来选择出最具代表性的框。本节课就给大家介绍一下非极大值抑制的概念、原理及其算法实现。🌈 

 前期回顾:

           YOLOv5基础知识入门(1)— YOLO算法的发展历程

           YOLOv5基础知识入门(2)— YOLOv5核心基础知识讲解

           YOLOv5基础知识入门(3)— 目标检测相关知识点

           YOLOv5基础知识入门(4)— 神经网络的基本概念与原理 

           YOLOv5基础知识入门(5)— 损失函数(IoU、GIoU、DIoU、CIoU和EIoU)

           YOLOv5基础知识入门(6)— 激活函数(Mish、Sigmoid、Tanh、ReLU、Softmax、SiLU等)

           目录

🚀1.NMS概念

🚀2.目标检测中的NMS

🚀3.NMS算法实现

🚀4.YOLOv5中的NMS

🚀1.NMS概念

非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。🌳

举例:在人脸检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数,但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高,并且抑制那些分数低的窗口。🍁


🚀2.目标检测中的NMS

目标检测一般分为两个过程:训练过程+检测(推理)过程。🌻

训练过程中,目标检测算法会根据给定的ground truth调整深度学习网络参数来拟合数据集的目标特征,训练完成后,神经网络的参数固定,因而能够直接对新的图像进行目标预测。 然而,在实际的目标预测中,一般的目标检测算法(R-CNN、YOLO等等)都会产生非常多的目标框,其中有很多重复的框定位到同一个目标,NMS作为目标检测的最后一步,用来去除这些重复的框,获得真正的目标框。🍄

两阶段目标检测算法中,以Faster-RCNN为例,有两处使用NMS,第一处是在训练的时候,利用 ProposalCreator 来生成 proposal 的时候,因为只需要一部分 proposal,所以利用NMS进行筛选。第二处使用是在预测的时候,当得到300个分类与坐标偏移结果的时候,需要对每个类别逐一进行非极大值抑制。那为什么对于每个类别不直接取置信度最高的那一个作为最终的预测呢?因为一张图中某个类别可能不止一个,例如一张图中有多个人,直接取最高置信度的只能预测其中的一个人,而通过NMS理想情况下可以使得每个人(每类中的每个个体)都会有且仅有一个 bounding box 框。🌺

一阶段目标检测算法中,以YOLOv5为例,输入一张640*640的图像,NMS之前会产生(80*80+40*40+20*20)*3=25200个目标框,这些框都有相应的分类置信度,当置信度满足正样本条件时(比如100个框,这些框密集的分布在目标周围),被送入NMS,NMS后会产生个数位个目标框(比如7个),如下图所示。👇

目标检测中应用NMS算法的主要目的是消除多余(交叉重复)的窗口,找到最佳物体检测位置。由于目标在图像中的形状和大小可能是各种各样的,所以为了能够较好地在图像中检测这些目标,通常会设计生成数量众多、长宽各异的候选边界框。但是对于一个目标检测任务来说,理想的情况是一个,所以目标只需输出一个最准确的边界框即可。💞


🚀3.NMS算法实现

为了从多个候选边界框中选择一个最佳边界框,通常会使用非极大值抑制(NMS)算法,这种算法用于“抑制”置信度低的边界框并只保留置信度最高的边界框。🌿

算法的实现过程为:

输入: 候选边界框集合B(每个候选框都有一个置信度)、IoU阈值N

输出: 最终的边界框集合D(初始为空集合)

1. 对集合B根据置信度进行降序排序;

2. 从集合B中选择第一个候选框(置信度最高),把它放入集合D中并从集合B中删除;

3. 遍历集合B中的每个候选框,计算它们与D集合中这个候选框的IoU值。如果IoU值大于阈值N, 则把它从集合B中删除;

4. 重复步骤2~3直到集合B为空。


🚀4.YOLOv5中的NMS

YOLOv5的通用工具类中有一段核心代码是处理后处理的NMS(非极大值抑制)部分。NMS是一种用于去除重叠较多的边界框的算法,以筛选出最准确的目标框。🐳

下面就对YOLOv5的NMS进行详解。🍎 🍏  🍒

NMS的主要思路是通过计算目标框之间的重叠度(即IOU,交并比),并选择IOU较低的目标框保留下来。YOLOv5的NMS代码使用了一个循环来遍历所有的预测框,并进行判断和筛选。🌴

首先,通过设定置信度阈值IOU阈值,将预测框中置信度低于阈值的框过滤掉,只保留置信度高的框。

接着,对剩下的框按照置信度进行降序排序,确保置信度高的框排在前面。

然后,从置信度最高的框开始,与其余框逐一计算IOU。如果某个框的IOU高于设定的IOU阈值,则将其删除,否则保留。

最后,重复上述步骤,直到遍历完所有的预测框,并得到最终筛选出来的目标框。

以上就是YOLOv5的NMS的主要讲解。这段代码的作用是在目标检测过程中,根据置信度和IOU阈值对预测框进行筛选,以得到准确的目标框。📚

名词解释:

置信度:置信度是介于0-1(或100%)之间的数字,它描述模型认为此预测边界框包含某类别目标的概率。

IoU(Intersection over Union,IoU):即两个边界框相交面积与相并面积的比值,边界框的准确度可以用IoU进行表示;一般约定,在检测中,IOU>0.5,则认为检测正确,一般阈值设为0.5。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103611.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Gitlab服务部署及应用

目录 Gitlab简介 Gitlab工作原理 Gitlab服务构成 Gitlab环境部署 安装依赖包 启动postfix,并设置开机自启 设置防火墙 下载安装gitlab rpm包 修改配置文件/etc/gitlab/gitlab.rb,生产环境下可以根据需求修改 重新加载配置文件 浏览器登录Gitlab输…

【C语言】扫雷游戏(可展开)——超细教学

🚩纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:C语言 🔥该篇将运用数组来实现 扫雷游戏。 目录: 🌟思路框架测试游戏 🌟测试部分函数实现&am…

23种设计模式攻关

👍一、创建者模式 🔖1.1、单例模式 单例模式(Singleton Pattern),用于确保一个类只有一个实例,并提供全局访问点。 在某些情况下,我们需要确保一个类只能有一个实例,比如数据库连接…

Qt+Pyhton实现麒麟V10系统下word文档读写功能

目录 前言1.C调用python1.1 安装Python开发环境1.2 修改Qt工程配置1.3 初始化Python环境1.4 C 调用Python 函数1.5 常用的Python接口 2.python虚拟环境2.1Python虚拟环境简介2.2 virtualenv 安装及使用2.3 在C程序中配置virtualenv 虚拟环境 3.python-docx库的应用4.总结 前言 …

WPF中手写地图控件(3)——动态加载地图图片

瓦片增加一个Loading动画 可以查看我的另一个博客WPF中自定义Loading图 从中心扩散 进行从里到外的扩散,方向是上左下右。如下图所示 于是我们可以定义一个拥有坐标X跟Y的集合,他允许这个集合,内部使用枚举器的MoveNext自动排序&#xf…

文件容灾备份方案,软件容灾备份方案

信息是企业的核心资产。然而,信息数据丢失的风险接踵而至。事故系统异常、病毒攻击、硬件损坏和自然灾害都可能导致重要数据的丢失。这就是为什么文档灾难恢复备份计划如此重要。本文将详细介绍文档灾难恢复备份计划的必要性,以及如何实施有效的备份方案…

使用Nodejs搭建简单的HTTP服务器 - 内网穿透公网远程访问

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址🍀小结🍀 🎉博客主页:小智_x0___0x_ 🎉欢迎关注:&…

LLM架构自注意力机制Transformers architecture Attention is all you need

使用Transformers架构构建大型语言模型显著提高了自然语言任务的性能,超过了之前的RNNs,并导致了再生能力的爆炸。 Transformers架构的力量在于其学习句子中所有单词的相关性和上下文的能力。不仅仅是您在这里看到的,与它的邻居每个词相邻&…

韦东山-电子量产工具项目:UI系统

代码结构 所有代码都已通过测试跑通,其中代码结构如下: 一、include文件夹 1.1 common.h #ifndef _COMMON_H #define _COMMON_Htypedef struct Region {int iLeftUpX; //区域左上方的坐标int iLeftUpY; //区域左下方的坐标int iWidth; //区域宽度…

如何在 Opera 中启用DNS over HTTPS

DNS over HTTPS(基于HTTPS的DNS)是一种更安全的浏览方式,但大多数 Web 浏览器默认情况下不启用它。了解如何在 Opera 浏览器中启用该功能。 您可能不知道这一点,但您的网络浏览器并不像您希望的那样私密或安全。您会看到&#xff…

搭建AI智能问答的这些前期工作可不要忘了

在搭建AI智能问答之前,我们需要做好相应的前期准备工作,不能盲目地去搭建模型。这样很容易导致我们模型后续的不完整性。所以looklook今天就基于搭建AI智能问答最基础的思路,带领大家一起去理顺一下我们需要做什么前期工作才能保证AI智能问答…

Web 开发 Django 管理工具

上次为大家介绍了 Django 的模型,通过模型就可以操作数据库,从而就可以改变页面的展示内容,那问题来了,我们只能通过手动编辑模型文件来配置模型吗?当然不是,Django 为我们提供了强大的工具,可以…

0101prox-shardingsphere-中间件

1 启动ShardingSphere-Proxy 1.1 获取 目前 ShardingSphere-Proxy 提供了 3 种获取方式: 二进制发布包DockerHelm 这里我们使用Docker安装。 1.2 使用Docker安装 step1:启动Docker容器 docker run -d \ -v /Users/gaogzhen/data/docker/shardings…

安装Node(脚手架)

目录 一,安装node(脚手架)1.1, 配置vue.config.js1.2, vue-cli3x的目录介绍1.3, package.json 最后 一,安装node(脚手架) 从官网直接下载安装即可,自带npm包管…

OpenCV基础知识(5)— 几何变换

前言:Hello大家好,我是小哥谈。OpenCV中的几何变换是指改变图像的几何结构,例如大小、角度和形状等,让图像呈现出缩放、翻转、旋转和透视效果。这些几何变换操作都涉及复杂、精密的计算。OpenCV将这些计算过程都封装成了非常灵活的…

自动化编排工具Terraform介绍(一)

Terraform是什么?: Terraform 是 HashiCorp 公司旗下的 Provision Infrastructure 产品, 是 AWS APN Technology Partner 与 AWS DevOps Competency Partner。Terraform 是一个 IT 基础架构自动化编排工具,它的口号是“Write, Plan, and Create …

优化时间流:区间调度问题的探索与解决

在浩如烟海的信息时代,时间的有效管理成为了一门不可或缺的艺术。无论是生活中的琐事,还是工作中的任务,时间都在无声地流逝,挑战着我们的智慧。正如时间在日常生活中具有的宝贵价值一样,在计算机科学领域,…

3:Ubuntu上配置QT交叉编译环境并编译QT程序到Jetson Orin Nano(ARM)

1.Ubuntu Qt 配置交叉编译环境 1.1 ubuntu 20.04安装Qt sudo apt-get install qtcreator 1.2 配置QT GCC配置同上 最后配置Kits 上面设置完成之后 ,设置Kits 中的Device(这是为了能够直接把项目部署到arm设备上) 点击NEXT之后会出现连接被拒绝,不用担…

USB Type-C端口集成式ESD静电保护方案 安全低成本

Type-C端口是根据USB3.x和USB4协议传输数据的,很容易受到电气过载(EOS)和静电放电(ESD)事件的影响。由于Type-C支持随意热插拔功能,其内部高集成度的芯片,更容易受到人体静电放电的伤害和损坏。…

Golang使用消息队列(RabbitMQ)

最近在使用Golang做了一个网盘项目(类似百度网盘),这个网盘项目有一个功能描述如下:用户会删除一个文件到垃圾回收站,回收站的文件有一个时间期限,比如24h,24h后数据库中记录和oss中文件会被删除…