C语言:指针(超深度讲解)

目录

指针:

学习目标:

指针可以理解为:

字符指针:

        定义:字符指针 char*。

字符指针的使用:

练习:

指针数组:

        概念:指针数组是一个存放指针的数组。

实现模拟二维数组:

 数组指针:

        概念:能够指向数组的指针。(可以理解为先与指针结合再与数组结合)

值得注意的是:

数组指针一般用于二维数组:数组的传参: 

一维数组传参:

二维数组的传参: 

总结:二维数组传参,函数形参的设计只能省略第一个[ ]的数字因为对一个二维数组,可以不知道有多少行,但是必须知道一行多少元素这样才方便运算。

指针的传参:

一级指针传参:

 二级指针的传参:

函数指针:

        概念:指向函数的指针。

阅读两段有趣的代码:

类型重定义:typedef 

函数指针数组:

        定义:int (*parr1[10])();  每个元素都是函数指针类型。

        用途:转移表。

函数指针数组的使用:

指向函数指针数组的指针:

定义:

        指向函数指针数组的指针是一个 指针 指针指向一个 数组 ,数组的元素都是 函数指针 ; (一般不直接写,通过函数指针一步一步变化得到,可以减少失误操作)

回调函数:

概念:

使用回调函数模拟实现qsort()函数:

qsort()运用:

排序int类型:

排序结构体类型:


学习目标:

1. 字符指针
2. 指针数组
3. 数组指针
4. 数组传参和指针传参
5. 函数指针
6. 函数指针数组
7. 指向函数指针数组的指针
8. 回调函数

指针:

指针可以理解为:

字符指针:

        定义:字符指针 char*。

字符指针的使用:

//使用1
int main ()
{
char ch = 'w' ;
char * pc = & ch ;
* pc = 'w' ;
return 0 ;
}
//使用2
int main ()
{
const char* pstr = "hello bit." ;//把一个常量字符串的 首字符 h 的地址 存放到指针变量 pstr
printf ( "%s\n" , pstr );
return 0 ;
}

练习:

指针数组:

        概念:指针数组是一个存放指针的数组。

int* arr1 [ 10 ];    // 整形指针的数组
char * arr2 [ 4 ];   // 一级字符指针的数组
char ** arr3 [ 5 ]; // 二级字符指针的数组

实现模拟二维数组:

 数组指针:

        概念:能够指向数组的指针。(可以理解为先与指针结合再与数组结合)

      int (*p)[10];
// 解释: p先和*结合,说明p是一个指针变量 ,然后指着指向的是一个大小为 10 个整型的数组。所以 p 是一个指针,指 向一个数组,叫数组指针。
// 这里要注意: [ ] 的优先级要高于 * 号的,所以必须加上()来保证 p 先和 * 结合。

值得注意的是:

数组名的理解:数组名是数组首元素的地址
有2个例外:
1. sizeof(数组名),这里的数组名不是数组首元素的地址,数组名表示整个数组,sizeof(数组名)计算的是整个数组的大小,单位是字节
2. &数组名,这里的数组名表示整个数组, &数组名取出的是整个数组的地址
 除此之外,所有的地方的数组名都是数组首元素的地址

数组指针一般用于二维数组:

数组的传参: 

        二维数组的每一行可以理解为二维数组的一个元素每一行又是一个一维数组,所以二维数组其实是一维数组的数组。

        二维数组的数组名,也是数组名,数组名就是数组首元素的地址。

arr----首元素的地址;

arr----第一行的地址;
arr----一维数组的地址即数组的地址。

一维数组传参:

二维数组的传参: 

 

总结:二维数组传参,函数形参的设计只能省略第一个[ ]的数字因为对一个二维数组可以不知道有多少行,但是必须知道一行多少元素这样才方便运算。

指针的传参:

一级指针传参:

 二级指针的传参:

函数指针:

        概念:指向函数的指针。

    int (*pf)(int, int) = &Add;

    //pf是函数指针变量
    //int (*)(int, int) 是函数指针类型

void test(char* pc, int arr[10])
{}
int main()
{void (*pf)(char *, int [10]) = test;return 0;
}

由上图可知:  

        函数名是函数的地址;

        &函数名也是函数的地址。

阅读两段有趣的代码:

//代码1
( * ( void ( * )()) 0 )();
解析:调用0地址处的函数
            1. 将0强制类型转换为void (*)()  类型的函数指针
            2. 调用0地址处的这个函数
//代码2
void ( * signal ( int , void ( * )( int )))( int );
解析:
    1.signal 是一个函数声明
    2.signal 函数有2个参数,第一个参数的类型是int,第二个参数的类型是 void(*)(int) 函数指针类型
    3.该函数指针指向的函数有一个int类型的参数,返回类型是void
    4.signal 函数的返回类型也是void(*)(int) 函数指针类型,该函数指针指向的函数有一个int类型的参数,返回类型是void

类型重定义:typedef 

//类型重定义1
typedef unsigned int uint;
typedef int* ptr_t;int main()
{uint u1;ptr_t p1;int* p2;return 0;
}//类型重定义2
typedef int(*parr_t)[10];
typedef int (*pf_t)(int, int) ;int main()
{typedef void(*pf_t)(int);pf_t signal(int, pf_t);//上方两句将下方的语句简化,效果相同void (* signal(int, void(*)(int) ) )(int);return 0;
}

函数指针数组:

        定义:int (*parr1[10])();  每个元素都是函数指针类型。

        用途:转移表。

函数指针数组的使用:

#include <stdio.h>
#include <string.h>int Add(int x, int y)
{return x + y;
}int Sub(int x, int y)
{return x - y;
}int Mul(int x, int y)
{return x * y;
}int Div(int x, int y)
{return x / y;
}void menu()
{printf("***************************\n");printf("*****  1.add  2.sub  ******\n");printf("*****  3.mul  4.div  ******\n");printf("*****  0.exit        ******\n");printf("***************************\n");
}
//实现int类型的加减乘除
int main()
{int input = 0;int x = 0;int y = 0;int ret = 0;//函数指针数组的使用 - 转移表int (* pfArr[5])(int, int) = {NULL, Add, Sub, Mul, Div};0     1    2    3    4do{menu();printf("请选择:>");scanf("%d", &input);if (input >= 1 && input <= 4){printf("请输入两个操作数:");scanf("%d %d", &x, &y);ret = pfArr[input](x, y);printf("ret = %d\n", ret);}else if(input == 0){printf("退出计算器\n");}else{printf("选择错误,重新选择\n");}} while (input);return 0;
}

指向函数指针数组的指针:

定义:

        指向函数指针数组的指针是一个 指针 指针指向一个 数组 ,数组的元素都是 函数指针 ; (一般不直接写,通过函数指针一步一步变化得到,可以减少失误操作)

void (*pf)(const char*) = test;   //pf是函数指针变量
void (*pfArr[10])(const char*);  //pfArr是存放函数指针的数组
void (* (*p) [10])(const char*) = &pfArr;//p指向函数指针数组的指针

回调函数:

概念:

         回调函数就是一个通过函数指针调用的函数。如果你把 函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数 时,我们就说这是回调函数。回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应。

//回调函数的使用

void Calc(int (*pf)(int, int))
{
    int x = 0;
    int y = 0;
    int ret = 0;
    printf("请输入两个操作数:");
    scanf("%d %d", &x, &y);
    ret = pf(x, y);
    printf("ret = %d\n", ret);
}

使用回调函数模拟实现qsort()函数:

base:指向要排序的数组的第一个对象的指针,转换为 .void*。

num:数组中由指向的元素个数。是无符号整型。

size:数组中每个元素的大小(以字节为单位),是无符号整型。

compar:指向比较两个元素的函数的指针,重复调用此函数以比较两个元素。

qsort()运用:

#include <stdio.h>
//qosrt函数的使用者得实现一个比较函数
int int_cmp(const void * p1, const void * p2)
{return (*( int *)p1 - *(int *) p2);
}
int main()
{int arr[] = { 1, 3, 5, 7, 9, 2, 4, 6, 8, 0 };int i = 0;qsort(arr, sizeof(arr) / sizeof(arr[0]), sizeof (int), int_cmp);for (i = 0; i< sizeof(arr) / sizeof(arr[0]); i++){printf( "%d ", arr[i]);}printf("\n");return 0;
}

排序int类型:

#include <stdio.h>//比较int类型的比较函数
int my_compare(const void* q1, const void* q2)
{return (*(int*)q1 - *(int*)q2);
}
//交换每一个字节的元素
void Swap(char* b1, char* b2, int size)
{int i = 0;for (i = 0; i < size; i++){char tmp = *b1;*b1 = *b2;*b2 = tmp;b1++;b2++;}
}
//模拟实现自己的qsort()函数
void my_qsort(void* base, int num, int size, int (*my_compare)(const void* q1, const void* q2))
{int i = 0;int j = 0;for (i = 0; i < num - 1; i++){for (j = 0; j < num - 1 - i; j++){//从小到大排序if (my_compare((char*)base+j*size,(char*)base+(j+1)*size) > 0){Swap((char*)base + j*size, (char*)base + (j + 1)*size, size);}}}
}int main()
{int arr[10] = { 2,4,6,7,8,3,1,0,9,5 };int sz = sizeof(arr) / sizeof(arr[0]);my_qsort(arr, sz, sizeof(arr[0]), my_compare);return 0;
}

排序结构体类型:

#include <string.h>
//创建学生结构体
struct Stu
{char name[20];int age;
};
//比较int类型的比较函数
int my_compare_age(const void* q1, const void* q2)
{return ((struct Stu*)q1)->age - ((struct Stu*)q2)->age;
}
//比较int类型的比较函数
int my_compare_name(const void* q1, const void* q2)
{return strcmp( ( (struct Stu*)q1 )->name ,( (struct Stu*)q2 )->name);
}
//交换每一个字节的元素
void Swap(char* b1, char* b2, int size)
{int i = 0;for (i = 0; i < size; i++){char tmp = *b1;*b1 = *b2;*b2 = tmp;b1++;b2++;}
}
//模拟实现自己的qsort()函数
void my_qsort(void* base, int num, int size, int (*my_compare)(const void* q1, const void* q2))
{int i = 0;int j = 0;//趟数for (i = 0; i < num - 1; i++){//一趟内部比较的对数for (j = 0; j < num - 1 - i; j++){//从小到大排序if (my_compare((char*)base + j * size, (char*)base + (j + 1) * size) > 0){//交换Swap((char*)base + j * size, (char*)base + (j + 1) * size, size);}}}
}int main()
{struct Stu arr[] = { {"zhangsan",34},{"lisi",27},{"wanwu",20} };int sz = sizeof(arr) / sizeof(arr[0]);my_qsort(arr, sz, sizeof(arr[0]), my_compare_age);my_qsort(arr, sz, sizeof(arr[0]), my_compare_name);return 0;
}

以上就是个人学习指针的个人见解和学习的解析,欢迎各位大佬在评论区探讨!

感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连!

                                              

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/103628.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】2236.判断根节点是否等于子节点之和

题目 给你一个 二叉树 的根结点 root&#xff0c;该二叉树由恰好 3 个结点组成&#xff1a;根结点、左子结点和右子结点。 如果根结点值等于两个子结点值之和&#xff0c;返回 true &#xff0c;否则返回 false 。 示例 1&#xff1a; 输入&#xff1a;root [10,4,6] 输出&…

【MySQL系列】Select语句单表查询详解(一)

&#x1f490; &#x1f338; &#x1f337; &#x1f340; &#x1f339; &#x1f33b; &#x1f33a; &#x1f341; &#x1f343; &#x1f342; &#x1f33f; &#x1f344;&#x1f35d; &#x1f35b; &#x1f364; &#x1f4c3;个人主页 &#xff1a;阿然成长日记 …

Kafka基本使用

查看Kafka的进程是否在运行 #命令行终端中运行如下命令 ps -ef | grep kafkafind / -iname kafka-server-start.shcd /usr/local/kafka/bin/#启动kafka ./kafka-server-start.sh -daemon /usr/local/kafka/config/server.propertiesKafka默认使用9092端口提供服务&#xf…

IDEA启动Tomcat两个端口的方式 使用nginx进行反向代理 JMeter测试分布式情况下synchronized锁失效

目录 引出IDEA启动Tomcat两个端口的方式1.编辑配置2.添加新的端口-Dserver.port80833.service里面管理4.启动后进行测试 使用nginx进行反向代理反向代理多个端口运行日志查看启动关闭重启 分布式情况下synchronized失效synchronized锁代码启动tomcat两个端口nginx反向代理JMete…

“产业应用创新奖2023”启动征集

当前&#xff0c;人工智能已经成为新一轮科技革命和产业变革的重要驱动力量&#xff0c;基于强算法、大算力和大数据的大模型成为主流方向。文心大模型和飞桨一直致力于发挥算法模型技术优势&#xff0c;助力AI 大生产加速升级。 文心飞桨赋能千行百业 产业创新不断涌现 数字医…

验证评估守护关基安全 赛宁数字孪生靶场创新实践

​​近日&#xff0c;由赛宁网安主办&#xff0c;ISC互联网安全大会组委会协办的第十一届互联网安全大会&#xff08;ISC 2023&#xff09;安全运营实践论坛圆满结束。赛宁网安产品总监史崯出席并作出主题演讲&#xff1a;《基于数字孪生靶场如何开展验证评估》&#xff0c;同时…

计算机网络 QA

DNS 的解析过程 浏览器缓存。当用户通过浏览器访问某域名时&#xff0c;浏览器首先会在自己的缓存中查找是否有该域名对应的 IP 地址&#xff08;曾经访问过该域名并且没有清空缓存&#xff09;系统缓存。当浏览器缓存中无域名对应的 IP 地址时&#xff0c;会自动检测用户计算机…

wazuh环境配置及漏洞复现

目录 wazuh环境配置 案例复现 wazuh环境配置 1.进入官网下载OVA启动软件 Virtual Machine (OVA) - Installation alternatives (wazuh.com) 2.进入VMware像配置其他虚拟机一样进行配置即可 3.上面会有提示&#xff1a;账号为&#xff0c;wazuh-user&#xff1b;密码&#xf…

高性能网络模式-Reactor

事实上&#xff0c;Reactor 模式也叫Dispatcher模式&#xff0c;即I/O 多路复⽤监听事件&#xff0c;收到事件后&#xff0c;根据事件类型分配&#xff08;Dispatch&#xff09;给某个进程/线程。Reactor 模式也是一种非阻塞同步网络模式。 Reactor 模式主要由 Reactor部分和处…

(6)(6.6) 恢复任务回放

文章目录 前言 6.6.1 配置 6.6.2 工作原理 6.6.3 局限性 前言 本页介绍了什么是"任务继续时后退"功能以及如何使用该功能。 &#xff01;Note 从 4.1 版起&#xff0c;Plane、Copter 和 Rover 均可使用此功能。 在某些应用或运行区域&#xff0c;为了消除冲突…

【应用层】网络基础 -- HTTP协议

再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口&#xff0c;在读写数据时&#xff0c;都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…

通过仿真理解RLC串联电路和RLC并联电路的阻抗、导纳、品质因数等概念

一.RLC串联电路 1.阻抗 CSDN编辑公式太难受了。。。直接上PPT~ 2.RLC串联电路阻抗的仿真分析 仿真与理论计算&#xff0c;还是有些误差存在的。 二.RLC并联电路 1.导纳 2.RLC并联电路阻抗的仿真分析 3.RLC并联电路的“虚断”特性 三、LC电路的作用 四、品质因子Q 1.RLC串…

YOLOv5基础知识入门(7)— NMS(非极大值抑制)原理解析

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。NMS是指非极大值抑制&#xff08;non maximum suppression&#xff09;&#xff0c;它是一种常用于物体检测任务的算法。在物体检测中&#xff0c;通常会有多个预测框&#xff08;bounding box&#xff09;被提议出来&…

Gitlab服务部署及应用

目录 Gitlab简介 Gitlab工作原理 Gitlab服务构成 Gitlab环境部署 安装依赖包 启动postfix&#xff0c;并设置开机自启 设置防火墙 下载安装gitlab rpm包 修改配置文件/etc/gitlab/gitlab.rb&#xff0c;生产环境下可以根据需求修改 重新加载配置文件 浏览器登录Gitlab输…

【C语言】扫雷游戏(可展开)——超细教学

&#x1f6a9;纸上得来终觉浅&#xff0c; 绝知此事要躬行。 &#x1f31f;主页&#xff1a;June-Frost &#x1f680;专栏&#xff1a;C语言 &#x1f525;该篇将运用数组来实现 扫雷游戏。 目录&#xff1a; &#x1f31f;思路框架测试游戏 &#x1f31f;测试部分函数实现&am…

23种设计模式攻关

&#x1f44d;一、创建者模式 &#x1f516;1.1、单例模式 单例模式&#xff08;Singleton Pattern&#xff09;&#xff0c;用于确保一个类只有一个实例&#xff0c;并提供全局访问点。 在某些情况下&#xff0c;我们需要确保一个类只能有一个实例&#xff0c;比如数据库连接…

Qt+Pyhton实现麒麟V10系统下word文档读写功能

目录 前言1.C调用python1.1 安装Python开发环境1.2 修改Qt工程配置1.3 初始化Python环境1.4 C 调用Python 函数1.5 常用的Python接口 2.python虚拟环境2.1Python虚拟环境简介2.2 virtualenv 安装及使用2.3 在C程序中配置virtualenv 虚拟环境 3.python-docx库的应用4.总结 前言 …

WPF中手写地图控件(3)——动态加载地图图片

瓦片增加一个Loading动画 可以查看我的另一个博客WPF中自定义Loading图 从中心扩散 进行从里到外的扩散&#xff0c;方向是上左下右。如下图所示 于是我们可以定义一个拥有坐标X跟Y的集合&#xff0c;他允许这个集合&#xff0c;内部使用枚举器的MoveNext自动排序&#xf…

文件容灾备份方案,软件容灾备份方案

信息是企业的核心资产。然而&#xff0c;信息数据丢失的风险接踵而至。事故系统异常、病毒攻击、硬件损坏和自然灾害都可能导致重要数据的丢失。这就是为什么文档灾难恢复备份计划如此重要。本文将详细介绍文档灾难恢复备份计划的必要性&#xff0c;以及如何实施有效的备份方案…

使用Nodejs搭建简单的HTTP服务器 - 内网穿透公网远程访问

文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址&#x1f340;小结&#x1f340; &#x1f389;博客主页&#xff1a;小智_x0___0x_ &#x1f389;欢迎关注&#xff1a;&…