Python Opencv实践 - 图像直方图均衡化

import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
print(img.shape)#图像直方图计算
#cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate)
#images:原图像(图像格式为 uint8 或 float32)。当传入函数时应该 用中括号 [] 括起来,例如:[img]。
#channels:同样需要用中括号括起来,它会告诉函数我们要统计那幅图 像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像 的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。
#mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如 果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并 使用它。
#histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
#ranges: 像素值范围,通常为 [0,256]
#hist:是一个 256x1 的数组作为返回值,每一个值代表了与次灰度值对应的像素点数目。
#accumulate:是一个布尔值,用来表示直方图是否叠加。
#参考资料:https://blog.csdn.net/yukinoai/article/details/87900860
hist_b = cv.calcHist([img], [0], None, [256], [0,256])
hist_g = cv.calcHist([img], [1], None, [256], [0,256])
hist_r = cv.calcHist([img], [2], None, [256], [0,256])
#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].set_title("Original Histogram")
axes[0][1].plot(hist_b, color='b')
axes[0][1].plot(hist_g, color='g')
axes[0][1].plot(hist_r, color='r')#彩色图像直方图均衡化
#cv.equalizeHist(src)
#参考资料:https://blog.csdn.net/qq_37701443/article/details/103564379
def RGBImageHistEqualize(src):hsv = cv.cvtColor(src, cv.COLOR_RGB2HSV)channels = cv.split(hsv)#对亮度通道进行直方图均衡化cv.equalizeHist(channels[2], channels[2])hsv = cv.merge(channels)src = cv.cvtColor(hsv, cv.COLOR_HSV2RGB)return src
img_hist_equalized = RGBImageHistEqualize(img)
hist_equalized_b = cv.calcHist([img_hist_equalized], [0], None, [256], [0,256])
hist_equalized_g = cv.calcHist([img_hist_equalized], [1], None, [256], [0,256])
hist_equalized_r = cv.calcHist([img_hist_equalized], [2], None, [256], [0,256])#显示直方图均衡化后的结果
axes[1][0].imshow(img_hist_equalized[:,:,::-1])
axes[1][0].set_title("Equalized")
axes[1][1].set_title("Equalized Histogram")
axes[1][1].plot(hist_equalized_b, color='b')
axes[1][1].plot(hist_equalized_g, color='g')
axes[1][1].plot(hist_equalized_r, color='r')

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/104504.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android中使用JT808协议进行车载终端通信的实现和优化

JT808是一种在中国广泛应用的车载终端通信协议,用于车辆与监控中心之间的数据通信。下面是关于Android平台上使用JT808协议进行通信的一般步骤和注意事项: 协议了解:首先,您需要详细了解JT808协议的规范和定义。该协议包含了通信消…

高速道路监控:工业路由器助力高速监控远程管理与维护

工业路由器在物联网应用中扮演着重要的角色。物联网的发展使得大量设备和传感器能够互联互通,而工业路由器作为连接这些设备和网络的中间桥梁,承担着数据传输和安全管理的重要责任。 工业路由器能够为高速监控提供网络功能,实现户外无线网络部…

基于Java+SpringBoot+vue前后端分离高校办公室行政事务管理系统设计实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…

selenium案例之RAM 用户登录 aliyun

文章目录 0x00 Selenium0x01 整体流程 思路1.1 打开浏览器并且访问 登录页面 url: https://signin.aliyun.com/login.htm#/main1.2 定位 "用户名" input 和 "下一步" button 点击下一步1.3 定位 "密码" input 和 "登录" button 点击登…

《Linux从练气到飞升》No.17 进程创建

🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux菜鸟刷题集 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的…

Stable Diffusion web UI 部署详细教程

前言 本文使用 AutoDL 平台进行 Stable Diffusion web UI 云端部署 AutoDL 官网:AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL Stable Diffusion web UI 官网:AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI (github.com) 步…

poi带表头多sheet导出

导出工具类 package com.hieasy.comm.core.excel;import com.hieasy.comm.core.excel.fragment.ExcelFragment; import com.hieasy.comm.core.utils.mine.MineDateUtil; import org.apache.poi.hssf.usermodel.*; import org.apache.poi.ss.usermodel.*; import org.apache.po…

Cesium 使用 Entity 绘制点线面

文章目录 一、绘制点1. 第一种2. 第二种 二、绘制面三、绘制线四、移除 Entity <!--* Author: HuKang* Date: 2023-08-18 11:06:43* LastEditTime: 2023-08-25 09:16:59* LastEditors: HuKang* Description: program-c* FilePath: \global-data-display\src\views\program-c…

深度学习-实验1

一、Pytorch基本操作考察&#xff08;平台课专业课&#xff09; 使用&#x1d413;&#x1d41e;&#x1d427;&#x1d42c;&#x1d428;&#x1d42b;初始化一个 &#x1d7cf;&#x1d7d1;的矩阵 &#x1d474;和一个 &#x1d7d0;&#x1d7cf;的矩阵 &#x1d475;&am…

深度学习处理文本(NLP)

文章目录 引言1. 反向传播1.1 实例流程实现1.2 前向传播1.3 计算损失1.4 反向传播误差1.5 更新权重1.6 迭代1.7 BackPropagation & Adam 代码实例 2. 优化器 -- Adam2.1 Adam解析2.2 代码实例 3. NLP任务4. 神经网络处理文本4.1 step1 字符数值化4.2 step 2 矩阵转化为向量…

【数据结构练习】单链表OJ题(一)

目录 一、移除链表元素思路1&#xff1a;思路2&#xff1a; 二、反转链表三、链表的中间节点四、链表中倒数第k个节点五、回文结构六、合并两个有序链表 一、移除链表元素 题目&#xff1a; 思路1&#xff1a; 在原来的链表上进行修改&#xff0c;节点的数据是val的删除&am…

Redis三种持久化方式详解

一、Redis持久性 Redis如何将数据写入磁盘 持久性是指将数据写入持久存储&#xff0c;如固态磁盘&#xff08;SSD&#xff09;。Redis提供了一系列持久性选项。其中包括&#xff1a; RDB&#xff08;快照&#xff09;&#xff1a;RDB持久性以指定的时间间隔执行数据集的时间点…

数据结构(7)

B树 B树中允许一个节点拥有多个key。设定参数M&#xff0c;构造B树 1.每个结点最多右M-1个key&#xff0c;并且以升序排列 2.每个结点最多右M个子结点 3.根节点至少右两个子结点 通过磁盘预读&#xff0c;将数据放到B树中&#xff0c;3层B树可容纳1024*1024*1024差不多10亿…

自动化部署及监测平台基本架构

声明 本文是学习 政务计算机终端核心配置规范. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 核心配置自动化部署及监测技术要求 自动化部署及监测平台基本架构 对于有一定规模的政务终端核心配置应用&#xff0c;需要配备自动化部署及监测平台&am…

element plus 的图片上传组件回显

element图片回显是通过修改file-list属性的url属性实现的。 <!-- 图片上传 --><el-form-item label"景区图片" prop"s_img"><el-uploadlist-type"picture-card":action"网址":on-change"handleChange":befor…

机器学习理论笔记(二):数据集划分以及模型选择

文章目录 1 前言2 经验误差与过拟合3 训练集与测试集的划分方法3.1 留出法&#xff08;Hold-out&#xff09;3.2 交叉验证法&#xff08;Cross Validation&#xff09;3.3 自助法&#xff08;Bootstrap&#xff09; 4 调参与最终模型5 结语 1 前言 欢迎来到蓝色是天的机器学习…

探索最短路径问题:寻找优化路线的算法解决方案

1. 前言&#xff1a;最短路径问题的背景与重要性 在现实生活中&#xff0c;我们常常面临需要找到最短路径的情况&#xff0c;如地图导航、网络路由等。最短路径问题是一个关键的优化问题&#xff0c;涉及在图中寻找两个顶点之间的最短路径&#xff0c;以便在有限时间或资源内找…

VUE调用高德地图之电子围栏

最近项目上电子围栏功能&#xff0c;就是地图上限定的区域内实现限行功能&#xff0c;用我们身边的事物来举例&#xff0c;共享单车的限行、限停区域就是电子围栏。由此可见&#xff0c;电子围栏最基础的做法就是在地图上实现多边形覆盖物。 效果图大概如下&#xff1a; 照例…

基于Java+SpringBoot+vue前后端分离华强北商城二手手机管理系统设计实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

数据仓库一分钟

简介 数据仓库&#xff08;Data Warehouse&#xff09;简称DW或DWH&#xff0c;是数据库的一种概念上的升级&#xff0c;可以说是为满足新需求设计的一种新数据库&#xff0c;而这个数据库是需容纳更多的数据&#xff0c;更加庞大的数据集&#xff0c;从逻辑上讲数据仓库和数据…