机器学习基础11-算法比较(基于印第安糖尿病Pima Indians 数据集)

比较不同算法的准确度,选择合适的算法,在处理机器学习的问题时是非常重要的。本节将介绍一种模式,在scikit-learn中可以利用它比较不同的算法,并选择合适的算法。你可以将这种模式作为自己的模板,来处理机器学习的问题;也可以通过对其他不同算法的比较,改进这个模板。

在本节将会学习以下内容:

  • 如何设计一个实验来比较不同的机器学习算法。
  • 一个可以重复利用的、用来评估算法性能的模板。
  • 如何可视化算法的比较结果。

选择最佳的机器学习算法

当参与一个机器学习的项目时,会经常因为如何选择一种合适的算法模型而苦恼。每种模型都有各自适合处理的数据特征,通过交叉验证等抽样验证方式可以得到每种模型的准确度,并选择合适的算法。通过这种评估方式,可以找到一种或两种最适合问题的算法。

当得到一个新的数据集时,应该通过不同的维度来审查数据,以便于找到数据的特征,这种方法也适用于选择算法模型。同样需要从不同的维度,用不同的方法来观察机器学习算法的准确度,并从中选择一种或两种对问题最有效的算法。一种比较好的方法是通过可视化的方式来展示平均准确度、方差等属性,以便于更方便地选择算法。接下来就介绍如何通过scikit-learn来实现对算法的比较

机器学习算法的比较

最合适的算法比较方法是:使用相同的数据、相同的方法来评估不同的算法,以便得到一个准确的结果。下面将使用同一个数据集来比较六种分类算法,以便选择合适的算法来解决问题。

  • 逻辑回归(LR)。
  • 线性判别分析(LDA)。
  • K近邻(KNN)。
  • 分类与回归树(CART)。
  • 贝叶斯分类器。
  • 支持向量机(SVM)。

我们继续使用 Pima Indians 数据集来介绍如何比较算法。这个数据集是一个二分类数据集,结果只有两个分类;用来训练算法模型的数据是八种全部由数字构成的属性特征值。采用10折交叉验证来分离数据,并采用相同的随机数分配方式来确保所有的算法都使用相同的数据。为了便于整理结果,给每一种算法设定一个短名字。

代码如下:


import pandas as pd
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrixfrom sklearn.model_selection import cross_val_score, ShuffleSplit, train_test_split, KFold
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]
# 分割数据集
n_splits = 10seed = 7kflod = KFold(n_splits=n_splits, random_state=seed, shuffle=True)models = {}models['LR'] = LogisticRegression()
models['LDA'] = LinearDiscriminantAnalysis()
models['KNN'] = KNeighborsClassifier()
models['CART'] = DecisionTreeClassifier()
models['SVM'] = SVC()
models['NB'] = GaussianNB()results = []for key in models:result = cross_val_score(models[key], X, Y, cv=kflod)results.append(result)print("%s: %.3f (%.3f)" % (key, result.mean(), result.std()))#图表展示
import matplotlib.pyplot as pltfig = plt.figure()
fig.suptitle('Algorithm Comparison')
ax = fig.add_subplot(111)
plt.boxplot(results)ax.set_xticklabels(models.keys())
plt.show()

运行结果:
执行结果给出了每种算法的平均准确度和标准方差

LR: 0.776 (0.045)
LDA: 0.767 (0.048)
KNN: 0.711 (0.051)
CART: 0.693 (0.059)
SVM: 0.760 (0.035)
NB: 0.759 (0.039)

同时也可以通过箱线图展示算法的准确度,以及10折交叉验证中每次验证结果的分布状况。其执行结果如图
在这里插入图片描述

本节给出了一种对多种算法进行分析比较的方法。通过这个方法可以找到一种或两种算法对给定数据集能够生成准确度最高的模型,从而选择合适的算法。这个方法也可以应用到所有机器学习的问题中。接下来将学习在scikit-learn中如何通过Pipelines来实现自动化流程处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106422.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务流程引擎:简单又灵活,实现流程全生命周期管理!

伴随着日益激烈的市场竞争,传统的办公操作已经无法满足发展需要了。如果采用微服务流程引擎加油助力,就可以帮助企业更好地管理数据资源,高效做好各种表单制作,实现高效率办公。流辰信息以市场为导向,用心钻研低代码技…

天翼物联、汕头电信与汕头大学共建新一代信息技术与数字创新(物联网)联合实验室

近日,在工业和信息化部和广东省人民政府共同主办的2023中国数字经济创新发展大会上,天翼物联、汕头电信与汕头大学共建“新一代信息技术与数字创新(物联网)”联合实验室签约仪式举行。汕头大学校长郝志峰、中国电信广东公司总经理…

[MyBatis系列④]核心配置文件

目录 1、简介 2、DTD 3、typeHandlers 3.1、默认类型处理器 3.2、自定义类型处理器 4、plugins ⭐MyBatis系列①:增删改查 ⭐MyBatis系列②:两种Dao开发方式 ⭐MyBatis系列③:动态SQL 1、简介 MyBatis的核心配置文件(通常命…

3D WEB轻量化引擎HOOPS产品助力NAPA打造船舶设计软件平台

NAPA(Naval Architectural PAckage,船舶建筑包),来自芬兰的船舶设计软件供应商,致力于提供世界领先的船舶设计、安全及运营的解决方案和数据分析服务。NAPA拥有超过30年的船舶设计经验,年营业额超过2560万欧…

Rspack 创建 vue2/3 项目接入 antdv(rspack.config.js 配置 less 主题)

一、简介 Rspack CLI 官方文档。 rspack.config.js 官方文档。 二、创建 vue 项目 创建项目(文档中还提供了 Rspack 内置 monorepo 框架 Nx 的创建方式,根据需求进行选择) # npm 方式 $ npm create rspacklatest# yarn 方式 $ yarn create…

Linux 终端命令之文件目录操作,对比Dos相关命令

目录 前言 基础命令(文件目录相关的) cd命令 【英文帮助】 【对应Dos命令】 pwd命令 【英文帮助】 【对应Dos命令】 ls命令 【英文帮助】 【对应Dos命令】 tree命令 【英文帮助】 【对应Dos命令】 mkdir命令 【英文帮助】 【对应Dos命令…

718. 最长重复子数组

718. 最长重复子数组 原题链接:完成情况:题解:方法一:动态规划方法二:滑动窗口方法三:二分查找 哈希 原题链接: 718. 最长重复子数组 https://leetcode.cn/problems/maximum-length-of-repe…

二甲医院信息管理系统源码 his系统源码 java+Angular+JavaScript

云HIS系统采用SaaS软件应用服务模式,提供软件应用服务多租户机制,实现一中心部署多机构使用。主要包含收费计费、药品管理、门诊医生工作站、住院医生工作站、护士工作站、数据统计、电子病历、医保接口等功能,能够满足医院及诊所日常业务开展…

人力资源小程序的设计方案与实现

随着互联网的发展,人才招聘已经成为许多企业的一项重要任务。为了提高招聘效率和便利求职者,许多企业开始采用小程序作为招聘平台。本文将为大家介绍一个搭建本地人才招聘网小程序的实用指南。 首先,我们需要登录【乔拓云】制作平台&#xff…

GNU-gcc编译选项-1

include目录 -I ,比如: -I. -I ./Platform/include -I ./Platform/include/prototypes -I ./tpm/include -I ./tpm/include/prototypes -I ./Simulator/include -I ./Simulator/include/prototypes 编译选项 在GCC编译器中,-D是一个编译选项&…

基于开源IM即时通讯框架MobileIMSDK:RainbowChat-iOS端v7.0版已发布

关于MobileIMSDK MobileIMSDK 是一套专门为移动端开发的开源IM即时通讯框架,超轻量级、高度提炼,一套API优雅支持 UDP 、TCP 、WebSocket 三种协议,支持 iOS、Android、H5、标准Java、小程序、Uniapp,服务端基于Netty编写。 工程…

区分什么是Java内存模型(JMM)和 JVM运行时数据区

文章目录 一、概念区分1、什么是内存模型?什么是(内存区域)运行时数据区?2、为什么要有Java内存模型?2.1、硬件的效率与一致性2.2、 CPU和缓存的一致性2.2.1、为什么需要CPU cache?2.2.2、三级缓存&#xf…

Redis知识点总结

概述 Redis诞生于2009年,全称是Remote Dictionarty Server(远程词典服务器) 只支持单线程 非关联:主要指的是表中没有主外键等概念 Redis是一款内存数据库,主要存储键值对类型的数据 基本用法 注意:该操作是在cli中进行的 首…

【MySQL系列】统计函数(count,sum,avg)详解

💐 🌸 🌷 🍀 🌹 🌻 🌺 🍁 🍃 🍂 🌿 🍄🍝 🍛 🍤 📃个人主页 :阿然成长日记 …

【面向大一新生IT技术社群招新啦,不来瞅瞅?】

个人名片: 🐼作者简介:一名大三在校生 🐻‍❄️个人主页:落798. 🐼个人WeChat:落798. 🕊️系列专栏:【零基础学java】 ----- 【重识c语言】 ---- 【计算机网络】—【Spri…

接口测试时遇到接口加密了该如何处理?

对明文编码生成信息摘要,以防止被篡改。比如MD5使用的是Hash算法,无论多长的输入,MD5都会输出长度为128bits的一个串。摘要算法不要秘钥,客户端和服务端采用相同的摘要算法即可针对同一段明文获取一致的密文。 对称加密 对称加密…

设计模式之工厂模式(万字长文)

文章目录 概述工厂模式的优点包括工厂模式有几种主要的变体看一个具体需求使用传统的方式来完成传统的方式的优缺点 简单工厂模式基本介绍使用简单工厂模式简单工厂模式的优缺点优点:缺点: 工厂方法模式看一个新的需求思路 1思路 2工厂方法模式介绍工厂方…

macOS上编译obs-studio

前言 最近基于obs的1个二开程序,需要移植到macOS平台上,由于遇到些问题,本文记录下如何在macOS上配置&编译&运行obs程序完整过程。 下载 首先下载cmake-gui工具,下载CMAKE,选择对应macOS平台的cmake版本&…

【ArcGIS微课1000例】0074:ArcGIS热点分析(Getis-Ord Gi*)---犯罪率热点图

严重声明:本文来自专栏《ArcGIS微课1000例:从点滴到精通》,为CSDN博客专家刘一哥GIS原创,原文及专栏地址为:(https://blog.csdn.net/lucky51222/category_11121281.html),谢绝转载或爬取!!! 文章目录 一、热点分析工具介绍二、ArcGIS热点分析案例1. 普通热点分析2. 加…

【ArcGIS微课1000例】0072:如何生成空间权重矩阵

严重声明:本文来自专栏《ArcGIS微课1000例:从点滴到精通》,为CSDN博客专家刘一哥GIS原创,原文及专栏地址为:(https://blog.csdn.net/lucky51222/category_11121281.html),谢绝转载或爬取!!! 文章目录 一、空间权重矩阵工具介绍二、ArcGIS生成空间权重矩阵三、注意事项…