Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

Pytorch | 利用PI-FGSM针对CIFAR10上的ResNet分类器进行对抗攻击

  • CIFAR数据集
  • PI-FGSM介绍
    • 背景和动机
    • 算法原理
    • 算法流程
  • PI-FGSM代码实现
    • PI-FGSM算法实现
    • 攻击效果
  • 代码汇总
    • pifgsm.py
    • train.py
    • advtest.py

之前已经针对CIFAR10训练了多种分类器:
Pytorch | 从零构建AlexNet对CIFAR10进行分类
Pytorch | 从零构建Vgg对CIFAR10进行分类
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
Pytorch | 从零构建ResNet对CIFAR10进行分类
Pytorch | 从零构建MobileNet对CIFAR10进行分类
Pytorch | 从零构建EfficientNet对CIFAR10进行分类
Pytorch | 从零构建ParNet对CIFAR10进行分类

本篇文章我们使用Pytorch实现PI-FGSM对CIFAR10上的ResNet分类器进行攻击.

CIFAR数据集

CIFAR-10数据集是由加拿大高级研究所(CIFAR)收集整理的用于图像识别研究的常用数据集,基本信息如下:

  • 数据规模:该数据集包含60,000张彩色图像,分为10个不同的类别,每个类别有6,000张图像。通常将其中50,000张作为训练集,用于模型的训练;10,000张作为测试集,用于评估模型的性能。
  • 图像尺寸:所有图像的尺寸均为32×32像素,这相对较小的尺寸使得模型在处理该数据集时能够相对快速地进行训练和推理,但也增加了图像分类的难度。
  • 类别内容:涵盖了飞机(plane)、汽车(car)、鸟(bird)、猫(cat)、鹿(deer)、狗(dog)、青蛙(frog)、马(horse)、船(ship)、卡车(truck)这10个不同的类别,这些类别都是现实世界中常见的物体,具有一定的代表性。

下面是一些示例样本:

在这里插入图片描述

PI-FGSM介绍

PI-FGSM(Patch-wise Iterative Fast Gradient Sign Method)是一种针对主流正常训练和防御模型的黑盒攻击算法,旨在生成具有强转移性的对抗样本。该算法通过引入放大因子和投影核,以块(patch)为单位生成对抗噪声,从而提高对抗样本在不同模型间的转移性。

背景和动机

  • DNN的对抗样本问题:深度神经网络(DNN)在取得巨大成就的同时,面临着对抗样本的威胁。这些添加了人类难以察觉噪声的对抗样本,能够轻易愚弄先进的DNN,使其做出不合理的预测,引发了对机器学习算法安全性的担忧。
  • 现有攻击方法的局限性:基于梯度的攻击方法是常见的攻击手段,其中迭代攻击在白盒设置下性能较好,但在黑盒设置中,由于攻击者无法获取目标模型信息,通常使用替代模型生成对抗样本,此时迭代攻击容易陷入局部最优,转移性较差;单步攻击虽转移性较高,但性能欠佳。
  • 研究动机:基于DNN的特性,不同模型在识别时关注的判别区域不同,且判别区域通常具有聚集性。仅添加像素级噪声可能影响对抗样本的转移性,因此研究具有聚集性的扰动生成方法具有重要意义。PI-FGSM旨在结合单步和迭代攻击的优点,在不牺牲替代模型性能的前提下提高转移性。

算法原理

  • 目标函数:PI-FGSM的目标是在满足 L ∞ L_{\infty} L 范数约束(即对抗扰动的最大幅度不超过 ϵ \epsilon ϵ)的条件下,最大化替代模型的交叉熵损失,以生成能够成功欺骗目标模型的对抗样本。
  • 梯度计算与放大:在每次迭代中,计算当前对抗样本 x t a d v x_t^{adv} xtadv 关于损失函数 J J J 的梯度 ∇ x J ( x t a d v , y ) \nabla_x J(x_t^{adv}, y) xJ(xtadv,y),并将步长设置为 ϵ T × β \frac{\epsilon}{T} \times \beta Tϵ×β(其中 T T T 为总迭代次数, β \beta β 为放大因子),对梯度进行放大,以增加扰动的幅度,提高攻击的有效性。
  • 投影核与噪声重用:引入特殊的均匀投影核 W p W_p Wp,当累积放大噪声 a t a_t at L ∞ L_{\infty} L 范数超过阈值 ϵ \epsilon ϵ 时,通过投影核将超出部分的噪声投影到周围区域,生成“可行方向”的噪声,同时重用这部分噪声,增加噪声斑块的聚集程度,以更好地匹配图像中判别区域的聚集特性,提高对抗样本的转移性。

算法流程

  • 初始化累积放大噪声 a 0 a_0 a0 和裁剪噪声 C C C 为0,设置初始对抗样本 x 0 a d v = x c l e a n x_0^{adv}=x^{clean} x0adv=xclean
  • 对于 t = 0 t = 0 t=0 T − 1 T - 1 T1
    • 计算梯度 ∇ x J ( x t a d v , y ) \nabla_x J(x_t^{adv}, y) xJ(xtadv,y)
    • 更新累积放大噪声 a t + 1 = a t + β ⋅ ϵ T ⋅ s i g n ( ∇ x J ( x t a d v , y ) ) a_{t + 1}=a_t+\beta \cdot \frac{\epsilon}{T} \cdot sign(\nabla_x J(x_t^{adv}, y)) at+1=at+βTϵsign(xJ(xtadv,y))
    • 如果 ∥ a t + 1 ∥ ∞ ≥ ϵ \|a_{t + 1}\|_{\infty} \geq \epsilon at+1ϵ,则计算裁剪噪声 C = c l i p ( ∣ a t + 1 ∣ − ϵ , 0 , ∞ ) ⋅ s i g n ( a t + 1 ) C = clip(|a_{t + 1}|-\epsilon, 0, \infty) \cdot sign(a_{t + 1}) C=clip(at+1ϵ,0,)sign(at+1),并更新 a t + 1 = a t + 1 + γ ⋅ s i g n ( W p ∗ C ) a_{t + 1}=a_{t + 1}+\gamma \cdot sign(W_p * C) at+1=at+1+γsign(WpC)(其中 γ \gamma γ 为投影因子);否则 C = 0 C = 0 C=0
  • 更新对抗样本 x t + 1 a d v = C l i p x c l e a n , ϵ { x t a d v + β ⋅ ϵ T ⋅ s i g n ( ∇ x J ( x t a d v , y ) ) + γ ⋅ s i g n ( W p ∗ C ) } x_{t + 1}^{adv}=Clip_{x^{clean}, \epsilon}\{x_t^{adv}+\beta \cdot \frac{\epsilon}{T} \cdot sign(\nabla_x J(x_t^{adv}, y))+\gamma \cdot sign(W_p * C)\} xt+1adv=Clipxclean,ϵ{xtadv+βTϵsign(xJ(xtadv,y))+γsign(WpC)},并将其裁剪到 [ − 1 , 1 ] [-1, 1] [1,1] 范围内。
  • 返回最终的对抗样本 x a d v = x T a d v x^{adv}=x_T^{adv} xadv=xTadv

PI-FGSM代码实现

PI-FGSM算法实现

import torch
import torch.nn as nndef PI_FGSM(model, criterion, original_images, labels, epsilon, beta=5, kernel_size=3, num_iterations=10):"""PI-FGSM (Patch-wise Iterative Fast Gradient Sign Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 扰动幅度- beta: 放大因子- kernel_size: 投影核大小- num_iterations: 迭代次数返回:- perturbed_image: 生成的对抗样本"""# gamma: 投影因子gamma = epsilon / num_iterations * beta# 初始化累积放大噪声和裁剪噪声a = torch.zeros_like(original_images)C = torch.zeros_like(original_images)perturbed_images = original_images.clone().detach().requires_grad_(True)# 定义投影核Wp = torch.ones((kernel_size, kernel_size), dtype=torch.float32) / (kernel_size ** 2 - 1)Wp[kernel_size // 2, kernel_size // 2] = 0Wp = Wp.expand(original_images.size(1), -1, -1).to(original_images.device)Wp = Wp.unsqueeze(0)for _ in range(num_iterations):# 计算梯度outputs = model(perturbed_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = perturbed_images.grad.data# 更新累积放大噪声a = a + beta * (epsilon / num_iterations) * data_grad.sign()# 裁剪噪声if a.abs().max() >= epsilon:C = (a.abs() - epsilon).clamp(0, float('inf')) * a.sign()a = a + gamma * torch.nn.functional.conv2d(input=C, weight=Wp, stride=1, padding=kernel_size // 2)# 更新对抗样本perturbed_images = perturbed_images + beta * (epsilon / num_iterations) * data_grad.sign() + gamma * torch.nn.functional.conv2d(C, Wp, stride=1, padding=kernel_size // 2)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

攻击效果

在这里插入图片描述

代码汇总

pifgsm.py

import torch
import torch.nn as nndef PI_FGSM(model, criterion, original_images, labels, epsilon, beta=5, kernel_size=3, num_iterations=10):"""PI-FGSM (Patch-wise Iterative Fast Gradient Sign Method)参数:- model: 要攻击的模型- criterion: 损失函数- original_images: 原始图像- labels: 原始图像的标签- epsilon: 扰动幅度- beta: 放大因子- kernel_size: 投影核大小- num_iterations: 迭代次数返回:- perturbed_image: 生成的对抗样本"""# gamma: 投影因子gamma = epsilon / num_iterations * beta# 初始化累积放大噪声和裁剪噪声a = torch.zeros_like(original_images)C = torch.zeros_like(original_images)perturbed_images = original_images.clone().detach().requires_grad_(True)# 定义投影核Wp = torch.ones((kernel_size, kernel_size), dtype=torch.float32) / (kernel_size ** 2 - 1)Wp[kernel_size // 2, kernel_size // 2] = 0Wp = Wp.expand(original_images.size(1), -1, -1).to(original_images.device)Wp = Wp.unsqueeze(0)for _ in range(num_iterations):# 计算梯度outputs = model(perturbed_images)loss = criterion(outputs, labels)model.zero_grad()loss.backward()data_grad = perturbed_images.grad.data# 更新累积放大噪声a = a + beta * (epsilon / num_iterations) * data_grad.sign()# 裁剪噪声if a.abs().max() >= epsilon:C = (a.abs() - epsilon).clamp(0, float('inf')) * a.sign()a = a + gamma * torch.nn.functional.conv2d(input=C, weight=Wp, stride=1, padding=kernel_size // 2)# 更新对抗样本perturbed_images = perturbed_images + beta * (epsilon / num_iterations) * data_grad.sign() + gamma * torch.nn.functional.conv2d(C, Wp, stride=1, padding=kernel_size // 2)perturbed_images = torch.clamp(perturbed_images, original_images - epsilon, original_images + epsilon)perturbed_images = perturbed_images.detach().requires_grad_(True)return perturbed_images

train.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import ResNet18# 数据预处理
transform_train = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])transform_test = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载Cifar10训练集和测试集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)# 定义设备(GPU或CPU)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")# 初始化模型
model = ResNet18(num_classes=10)
model.to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)if __name__ == "__main__":# 训练模型for epoch in range(10):  # 可以根据实际情况调整训练轮数running_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = data[0].to(device), data[1].to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 100 == 99:print(f'Epoch {epoch + 1}, Batch {i + 1}: Loss = {running_loss / 100}')running_loss = 0.0torch.save(model.state_dict(), f'weights/epoch_{epoch + 1}.pth')print('Finished Training')

advtest.py

import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from models import *
from attacks import *
import ssl
import os
from PIL import Image
import matplotlib.pyplot as pltssl._create_default_https_context = ssl._create_unverified_context# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.491, 0.482, 0.446), (0.247, 0.243, 0.261))])# 加载CIFAR10测试集
testset = torchvision.datasets.CIFAR10(root='./data', train=False,download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=128,shuffle=False, num_workers=2)# 定义设备(GPU优先,若可用)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = ResNet18(num_classes=10).to(device)criterion = nn.CrossEntropyLoss()# 加载模型权重
weights_path = "weights/epoch_10.pth"
model.load_state_dict(torch.load(weights_path, map_location=device))if __name__ == "__main__":# 在测试集上进行FGSM攻击并评估准确率model.eval()  # 设置为评估模式correct = 0total = 0epsilon = 16 / 255  # 可以调整扰动强度for data in testloader:original_images, labels = data[0].to(device), data[1].to(device)original_images.requires_grad = Trueattack_name = 'PI-FGSM'if attack_name == 'FGSM':perturbed_images = FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'BIM':perturbed_images = BIM(model, criterion, original_images, labels, epsilon)elif attack_name == 'MI-FGSM':perturbed_images = MI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'NI-FGSM':perturbed_images = NI_FGSM(model, criterion, original_images, labels, epsilon)elif attack_name == 'PI-FGSM':perturbed_images = PI_FGSM(model, criterion, original_images, labels, epsilon)perturbed_outputs = model(perturbed_images)_, predicted = torch.max(perturbed_outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100 * correct / total# Attack Success RateASR = 100 - accuracyprint(f'Load ResNet Model Weight from {weights_path}')print(f'epsilon: {epsilon:.4f}')print(f'ASR of {attack_name} : {ASR :.2f}%')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/494162.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Hadoop yarn安装

目录 一、环境准备 1、准备三台服务器 2、给三台主机分别配置主机名 3、给三台服务器配置域名,三台配置一样的 4、关闭防火墙 5、创建用户和用户组,三台配置一样的 6、创建安装目录 7、设置免密登录,三台机器都要执行下面的步骤 8、三…

人脸生成3d模型 Era3D

从单视图图像进行3D重建是计算机视觉和图形学中的一项基本任务,因为它在游戏设计、虚拟现实和机器人技术中具有潜在的应用价值。早期的研究主要依赖于直接在体素上进行3D回归,这往往会导致过于平滑的结果,并且由于3D训练数据的限制&#xff0…

MFC用List Control 和Picture控件实现界面切换效果

添加List Control 和Picture控件 添加 3个子窗体 把子窗体边框设置为None, 样式设为Child 声明 CListCtrl m_listPageForm;void ShowForm(int nIndex);void CreatFormList();void CMFCApplication3Dlg::DoDataExchange(CDataExchange* pDX) {CDialogEx::DoDataExchange(pDX);DD…

机器学习基础算法 (一)-线性回归

python 环境的配置参考 从零开始:Python 环境搭建与工具配置 线性回归的 Python 实现 线性回归是一种经典的机器学习算法,用于预测连续的目标变量。它假设目标变量和特征之间存在线性关系。本文将详细介绍线性回归的原理、Python 实现、模型评估和调优&…

图解HTTP-HTTP报文

参考资料:图解HTTP HTTP报文 用于HTTP协议交互的信息被称为HTTP报文。请求端的HTTP请求报文,响应端(服务器端)的叫做响应报文。HTTP报文本身是由多行(CR LF作为换行符)数据行构成的文本。 请求报文及响…

WPF Binding 绑定

绑定是 wpf 开发中的精髓,有绑定才有所谓的数据驱动。 1 . 背景 目前 wpf 界面可视化的控件,继承关系如下, 控件的数据绑定,基本上都要借助于 FrameworkElement 的 DataContext 属性。 只有先设置了控件的 DataContext 属性&…

Day-03 Vue(生命周期、生命周期钩子八个函数、工程化开发和脚手架、组件化开发、根组件、局部注册和全局注册的步骤)

01.生命周期 Vue生命周期:就是一个Vue实例从创建 到 销毁 的整个过程 生命周期四个阶段:① 创建 ② 挂载 ③ 更新 ④ 销毁 1.创建阶段:创建响应式数据 2.挂载阶段:渲染模板 3.更新阶段:修改数据,更新视图 4…

AI芯片常见概念

文章目录 AI芯片常见概念前言常见概念AI芯片分类按照芯片的技术架构分GPU半定制化的 FPGA全定制化 ASIC神经拟态芯片 按应用场景分训练卡推理卡 按部署位置分国产AI卡资料汇总 AI芯片算力和能效比AI芯片算力AI芯片能效比 封装相关Chiplet技术3DIC三星多芯片集成联盟&#xff08…

边缘智能网关助力打造建筑智慧消防物联网

随着经济社会的快速发展,为了满足民众生产、生活、消费需求,高层建筑、大型综合连体建筑持续兴建,各类火灾风险和事故也越发增加。得益于物联网的普及应用,消防监测和管理迎来数字化、智慧化转型升级。 针对各类高层、大型建筑消防…

深度学习实战车辆目标跟踪【bytetrack/deepsort】

本文采用YOLOv8作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv8以其高效的实时检测能力,在多个目标检测任务中展现出卓越性能。本研究针对车辆目标数据集进行训练和优化,该数据集包含丰富的车辆目标图像样本…

电脑开机提示error loading operating system怎么修复?

前一天电脑还能正常运行,但今天启动时却显示“Error loading operating system”(加载操作系统错误)。我已经仔细检查了硬盘、接线、内存、CPU和电源,确认这些硬件都没有问题。硬盘在其他电脑上可以正常使用,说明不是硬…

财会〔2024〕22号发布,全面提高管理会计数字化、智能化水平,泛微·齐业成来助力

自《财政部关于全面推进管理会计体系建设的指导意见》(财会〔2014〕27号)发布以来,我国管理会计体系建设取得明显成效。时隔十载,2024年12月16日财政部发布《关于全面深化管理会计应用的指导意见》财会〔2024〕22 号(以…

数字经济下的 AR 眼镜

目录 1. 📂 AR 眼镜发展历史 1.1 AR 眼镜相关概念 1.2 市面主流 XR 眼镜 1.3 AR 眼镜大事记 1.4 国内外 XR 眼镜 1.5 国内 AR 眼镜四小龙 2. 🔱 关键技术 2.1 AR 眼镜近眼显示原理 2.2 AR 眼镜关键技术 2.3 AR 眼镜技术难点 3. &#x1f4a…

浅析InnoDB引擎架构(已完结)

大家好,我是此林。 今天来介绍下InnoDB底层架构。 1. 磁盘架构 我们所有的数据库文件都保存在 /var/lib/mysql目录下。 由于我这边是docker部署的mysql,用如下命令查看mysql数据挂载。 docker inspect mysql-master 如下图,目前只有一个数…

k8s迁移——岁月云实战笔记

新系统使用rockylinux9.5,旧系统虚拟机装的是centos7 1 目标服务器 1.1 禁止swap swapoff -a vi /etc/fstab #/dev/mapper/rl-swap none swap defaults 0 0 #执行,swap一行都是0 free -h 1.2 关闭防火墙 只是为了减…

砂轮磨料基础知识及发展学习笔记

平时接触磨削的工序有很多,像平面、外圆,齿轮的齿形磨削,刀具的前刃及齿形磨削等等,花了些时间,整理了一些资料,把关于磨料的内容整理了一下。有需要的小伙伴可以耐心阅读一下。 从古代使用的简陋石头到如今…

【Spring】Spring框架之-AOP

目录 1. AOP的引入 2. AOP相关的概念 2.1 AOP概述 2.2 AOP的优势 2.3. AOP的底层原理--目前先不具体阐述,后面讲 3. Spring的AOP技术-配置文件方式 3.1 AOP相关的术语 3.2 基本准备工作 3.3 AOP配置文件方式的入门 3.4 切入点的表达式 3.5 AOP的通知类型 …

Servlet学习中遇到的一些问题及解决

错误:JavaWeb-错误:类xxx不是Servlet 解决:可能是Tomcat版本不匹配导致,更换Tomcat版本解决问题 错误:在自定义的Servlet类中不能添加 WebServlet 注解 解决:可能是WebServlet版本不匹配,更换…

tomcat的安装以及配置(基于linuxOS)

目录 安装jdk环境 yum安装 验证JDK环境 安装tomcat应用 yum安装 ​编辑 使用yum工具进行安装 配置tomcat应用 关闭防火墙和selinux 查看端口开启情况 ​编辑 访问tomcat服务 安装扩展包 重启服务 查看服务 源码安装 进入tomcat官网进行下载 查找自己要用的to…

workman服务端开发模式-应用开发-gateway长链接端工作原理

一、长链接的工作原理 Register类其实也是基于基础的Worker开发的。Gateway进程和BusinessWorker进程启动后分别向Register进程注册自己的通讯地址,Gateway进程和BusinessWorker通过Register进程得到通讯地址后,就可以建立起连接并通讯了。而Gateway进程…