STM32--SPI通信与W25Q64(1)

文章目录

  • 前言
  • SPI通信
    • 硬件电路
    • 移位过程
  • SPI时序
    • 起始与终止条件
    • 交换一个字节
  • W25Q64
    • 硬件电路
    • 框图
  • FLASH操作注意事项
  • 软件SPI读写W25Q64

前言

USART串口链接入口

I2C通信链接入口

SPI通信

SPI(Serial Peripheral Interface)是一种高速的、全双工、同步的串行通信协议。通常用于连接主控芯片和外围设备,比如传感器、存储器、显示屏等。SPI使用简单,只需要几根线就可以实现进行通信。
在这里插入图片描述

硬件电路

在这里插入图片描述
主要线路:

SCLK(时钟信号):由主设备产生,用于同步数据传输的时钟信号。
MOSI(主设备输出从设备输入):主设备将数据发送给从设备的数据线。
MISO(主设备输入从设备输出):从设备将数据发送给主设备的数据线。
SS/CS(片选信号):由主设备控制,用于选择要进行通信的特定设备。

上图中,主机连接着多个从机,但在通信时,只能对一个从机进行SPI通信,会通过选定的从机的片选信号SS从高电平置于低电平(其他没有选中的保持高电平)让主机与其通信。

移位过程

在这里插入图片描述
由于有两条传输数据线,所以SPI通信能做到同时进行发送数据和接收数据的特点。

主机和从机都由主机的波特率发生器控制着时钟信号,实现同步的传输。

首先主机会将移位寄存器的高位通过MOSI数据线传送到从机的移位寄存器的最低位;同时,从机的移位寄存器的最高位会通过MISO数据线传送到主机移位寄存器的最低位。两个移位寄存器将最高位的数据传出之后,移位寄存器就会进行向右移位,因此最低位也会腾出空间,让主机的最高位数据放到从机的最低位,从机的最低位数据放到主机的最低位。以此循环八次,就能将一个字节的数据进行转换了
在这里插入图片描述

SPI时序

起始与终止条件

起始条件:SS从高电平切换到低电平
终止条件:SS从低电平切换到高电平
在这里插入图片描述
这是片选信号,高低电平的切换代表SPI时序的开始和结束。

交换一个字节

交换一个字节(模式0)
CPOL=0:空闲状态时,SCK为低电平
CPHA=0:SCK第一个边沿移入数据,第二个边沿移出数据
在这里插入图片描述
对于SPI通信,由于是同时进行数据传输,所以称之为字节的交换。
交换字节有4个模式,不同之处就在于空闲状态SCK是高电平还是低电平;还有一个从SCK的第一个边沿还是第二个边沿移入数据,这里将介绍模式0的交换,其他同理。

首先这里说的移入数据和移出数据,是指数据的移出会先放在MOSI数据线或者是MISO数据线上,通过一定的时间再把数据放入对方的最低位。所以,只有先移出数据,才能移入数据。
而这里的却从SCK的第一个边沿就移入数据,是因为主机和从机在SS的低边沿就进行将数据移出到MOSI和MISO上,所以会在SCK的高边沿就进行数据的移入,到了SCK的低边沿就将数据移出,依次重复八次,就将一个字节交换成功了

其他模式
交换一个字节(模式1)
CPOL=0:空闲状态时,SCK为低电平
CPHA=1:SCK第一个边沿移出数据,第二个边沿移入数据
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
这是主机向选定的从机发送一个0x06的信号,由于对于从机发送的内容不关心,所以默认为0xFF。所以一般情况下,只有我们选择读取从机的数据,MISO的数据线才会有波形变化。

W25Q64

W25Q64是一款由华邦公司推出的大容量SPI FLASH产品,其容量为64Mb(8MB)。它属于W25Q系列器件,相比普通的串行闪存硬件,在灵活性和性能方面也有更出色的表现。
W25Q64可以用于存储图片数据,字库数据、音频数据以及保存设备运行日志文件等。
该芯片将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。支持双路和四路SPI接口,具有较高的数据传输速率。
在这里插入图片描述
存储介质:Nor Flash(闪存)
时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

硬件电路

在这里插入图片描述

引脚功能
VCC、GND电源(2.7~3.6V)
CS(SS)SPI片选
CLK(SCK)SPI时钟
DI(MOSI)SPI主机输出从机输入
DO(MISO)SPI主机输入从机输出
WP写保护
HOLD数据保持

看黄色部分即可,左边是外部引脚接口,右边是芯片电路;

在引脚名上加上一横线表示接通时默认为低电平,VCC与GND连接时会有一个滤波电容进行滤波,还并联一个指示灯表示是否已经通电

HOLD数据保持:相当一个暂停键;当你写入数据一半时,要在别的设备使用SPI通信,那么在当前设备你就可以触发HOLD,当前设备的SPI时序就会保持静止,你就可以使用SPI对别的设备进行使用,当回到当前设备时,HOLD解除,会从禁止的SPI时序进行恢复。

WP写保护:可以通过设置特殊的写保护位来防止数据被修改。有助于保护重要数据免受意外的写操作。

框图

在这里插入图片描述
上面一大部分就是存储区间,将8M字节的容量分为128块,每个块包含16个扇区,每个扇区有4K字节。每个扇区还包括16个的页区,每个页区有256字节,页是最小单位。

而写入和读取都由左下角的SPI命令与控制逻辑的黑盒进行控制;
接着看到上面,是写逻辑和状态寄存器,可以通过状态寄存器来判断是否已经写入数据;
通过高压发电机来对数据进行擦除;
下面是页地址锁存器和字节地址锁存器,会对块区间通过行解码和列解码,可以判定你在哪个页区进行写入和读出;
块区域的下面是一个256字节页缓冲区,数据写入需要一定的时间,会通过缓冲区来进行缓冲。

FLASH操作注意事项

写入操作时
写入操作前,必须先进行写使能
每个数据位只能由1改写为0,不能由0改写为1
写入数据前必须先擦除,擦除后,所有数据位变为1
擦除必须按最小擦除单元进行(扇区)
连续写入多字节时,最多写入一页的数据,超过页尾位置的数据,会回到页首覆盖写入
写入操作结束后,芯片进入忙状态,不响应新的读写操作
读取操作时
直接调用读取时序,无需使能,无需额外操作,没有页的限制,读取操作结束后不会进入忙状态,但不能在忙状态时读取

软件SPI读写W25Q64

OLED代码链接入口

连接方式:
在这里插入图片描述
将数据存储在W25Q64中,通过断电测试它的存储功能;

大体思路:实现SPI通信的时序条件,接着利用SPI通信实现W25Q64时序,最后在主程序实现对FLASH的测试

MySPI.c

#include "stm32f10x.h"                  // Device header//片选电平
void MySPI_W_SS(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)Byte);
}
//时钟电平
void MySPI_W_SCK(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)Byte);
}
//主机发送到从机
void MySPI_W_MOSI(uint8_t Byte)
{GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)Byte);
}
//从机发送到主机
uint8_t MySPI_R_MISO()
{return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}//初始化
void MySPI_Init()
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP; //推挽输出GPIO_InitStructure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_7;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Mode=GPIO_Mode_IPU; //上拉输入GPIO_InitStructure.GPIO_Pin=GPIO_Pin_6;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;GPIO_Init(GPIOA,&GPIO_InitStructure);MySPI_W_SS(1);MySPI_W_SCK(0);
}
//开始
void MySPI_Start()
{MySPI_W_SS(0);
}
//结束
void MySPI_Stop()
{MySPI_W_SS(1);
}
//交换字节
uint8_t MySPI_SwapByte(uint8_t SendByte)
{uint8_t ReceiveByte=0x00,i;for(i=0;i<8;i++){MySPI_W_MOSI(SendByte&(0x80>>i)); //主发送字节MySPI_W_SCK(1);if(MySPI_R_MISO()==1)ReceiveByte|=(0x80>>i); //主接收字节MySPI_W_SCK(0);}return ReceiveByte;
}

MySPI.h

#ifndef __MYSPI_H__
#define __MYSPI_H__void MySPI_Init();
void MySPI_Start();
void MySPI_Stop();
uint8_t MySPI_SwapByte(uint8_t SendByte);#endif

W25Q64_Ins.h

#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3#define W25Q64_DUMMY_BYTE							0xFF#endif

W25Q64.h

#ifndef __W25Q64_H__
#define __W25Q64_H__void W25Q64_Init();
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID);
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count);#endif

W25Q64.c

#include "stm32f10x.h"                  // Device header
#include "W25Q64_Ins.h"
#include "MySPI.h"//初始化
void W25Q64_Init()
{MySPI_Init();
}
//读ID
void W25Q64_ReadID(uint8_t* HID,uint16_t* SID)
{MySPI_Start();MySPI_SwapByte(W25Q64_JEDEC_ID);*HID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);*SID=MySPI_SwapByte(W25Q64_DUMMY_BYTE);*SID<<=8;*SID|=MySPI_SwapByte(W25Q64_DUMMY_BYTE);MySPI_Stop();
}
//写使能
void W25Q64_WriteEnable()
{MySPI_Start();MySPI_SwapByte(W25Q64_WRITE_ENABLE);MySPI_Stop();
}
//等待忙状态
void W25Q64_WaitBusy()
{MySPI_Start();MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);uint32_t count=10000;while((MySPI_SwapByte(W25Q64_DUMMY_BYTE)&0x01)==0x01||count){count--;}MySPI_Stop();
}
//页编程
void W25Q64_PageProgram(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{W25Q64_WriteEnable();uint16_t i;MySPI_Start();MySPI_SwapByte(W25Q64_PAGE_PROGRAM);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address<<8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){MySPI_SwapByte(DataArray[i]);}MySPI_Stop();W25Q64_WaitBusy();
}
//扇区擦除
void W25Q64_SectorErase(uint32_t Address)
{W25Q64_WriteEnable();MySPI_Start();MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address>>8);MySPI_SwapByte(Address);MySPI_Stop();W25Q64_WaitBusy();
}
//读数据
void W25Q64_ReadData(uint32_t Address,uint8_t* DataArray,uint16_t Count)
{uint16_t i;MySPI_Start();MySPI_SwapByte(W25Q64_READ_DATA);MySPI_SwapByte(Address<<16);MySPI_SwapByte(Address>>8);MySPI_SwapByte(Address);for(i=0;i<Count;i++){DataArray[i]=MySPI_SwapByte(W25Q64_DUMMY_BYTE);}MySPI_Stop();
}

对于W25Q64来说,需要先对不同的操作先写入对应的地址,
在这里插入图片描述
在这里插入图片描述

然后根据手册,写入地址和内容;

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "Buzzer.h"
#include "W25Q64.h"
#include "OLED.h"uint8_t HID;
uint16_t SID;uint8_t ArrayWrite[]={0xAA,0xBB,0xCC,0xDD};
uint8_t ArrayRead[4];
int main()
{OLED_Init();W25Q64_Init();OLED_ShowString(1, 1, "MID:   DID:");OLED_ShowString(2, 1, "W:");OLED_ShowString(3, 1, "R:");W25Q64_ReadID(&HID,&SID);OLED_ShowHexNum(1,5,HID,2);OLED_ShowHexNum(1,12,SID,4);W25Q64_SectorErase(0x000100);W25Q64_PageProgram(0x000000,ArrayWrite,4);W25Q64_ReadData(0x000000,ArrayRead,4);OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);OLED_ShowHexNum(3, 3, ArrayRead[0], 2);OLED_ShowHexNum(3, 6, ArrayRead[1], 2);OLED_ShowHexNum(3, 9, ArrayRead[2], 2);OLED_ShowHexNum(3, 12, ArrayRead[3], 2);while(1){}
}

可以通过改变擦除的地址和页编程的地址,以及存储的内容;来进行验证FLASH的注意事项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/106685.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实战:大数据Spark简介与docker-compose搭建独立集群

文章目录 前言技术积累Spark简介Spark核心功能及优势Spark运行架构 Spark独立集群搭建安装docker和docker-composedocker-compose编排docker-compose编排并运行容器 Spark集群官方案例测试写在最后 前言 很多同学都使用过经典的大数据分布式计算框架hadoop&#xff0c;其分布式…

c++11 标准模板(STL)(std::basic_istringstream)(五)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT> > class basic_istringstream;(C11 前)template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allo…

小程序中的全局配置以及常用的配置项(window,tabBar)

全局配置文件和常用的配置项 app.json: pages:是一个数组&#xff0c;用于记录当前小程序所有页面的存放路径&#xff0c;可以通过它来创建页面 window:全局设置小程序窗口的外观(导航栏&#xff0c;背景&#xff0c;页面的主体) tabBar:设置小程序底部的 tabBar效果 style:是否…

C#-集合小例子

目录 背景&#xff1a; 过程: 1.添加1-100数: 2.求和: 3.平均值: 4.代码:​ 总结: 背景&#xff1a; 往集合里面添加100个数&#xff0c;首先得有ArrayList导入命名空间&#xff0c;这个例子分为3步&#xff0c;1.添加1-100个数2.进行1-100之间的总和3.求总和的平均值&…

数据结构(5)

堆 堆可以看作一颗完全二叉树的数组对象。 特性&#xff1a; 1.堆是完全二叉树&#xff0c;除了树最后一层不需要满&#xff0c;其余层次都需要满&#xff0c;如果最后一层不是满的&#xff0c;那么要求左满右不满 2.通常使用数组实现&#xff0c;将二叉树结点依次放入数组中…

Redis 重写 AOF 日志期间,主进程可以正常处理命令吗?

重写 AOF 日志的过程是怎样的&#xff1f; Redis 的重写 AOF 过程是由后台子进程 bgrewriteaof 来完成的&#xff0c;这么做有以下两个好处。 子进程进行 AOF 重写期间&#xff0c;主进程可以继续处理命令请求&#xff0c;从而避免阻塞主进程子进程带有主进程的数据副本。这里…

远程控制:用了向日葵控控A2后,我买了BliKVM v4

远程控制电脑的场景很多&#xff0c;比如把办公室电脑的文件发到家里电脑上&#xff0c;但是办公室电脑旁边没人。比如当生产力用的电脑一般都比较重&#xff0c;不可能随时带在身边&#xff0c;偶尔远程操作一下也是很有必要的。比如你的设备在工况恶劣的环境中&#xff0c;你…

基础论文学习(2)——DETR

目标检测 DETR&#xff1a;End-to-End Detection with Transformer detr是facebook提出的引入transformer到目标检测领域的算法&#xff0c;效果很好&#xff0c;做法也很简单&#xff0c;相较于RCNN和YOLO系列算法&#xff0c;避免了Proposal/AnchorNMS的复杂流程。 1. detr…

jvm开启远程调试功能;idea远程debug

概述 有时候一些问题本地调试无法复现&#xff0c;这个时候可以开启jvm的远程调试功能 jar包启动 jdk8 java -agentlib:jdwptransportdt_socket,address8787,servery,suspendn -jar xxx.jarjdk11/17 java -agentlib:jdwptransportdt_socket,address*:8787,servery,suspe…

STM32F103 4G Cat.1模块EC200S使用

一、简介 EC200S-CN 是移远通信最近推出的 LTE Cat 1 无线通信模块&#xff0c;支持最大下行速率 10Mbps 和最大上行速率 5Mbps&#xff0c;具有超高的性价比&#xff1b;同时在封装上兼容移远通信多网络制式 LTE Standard EC2x&#xff08;EC25、EC21、EC20 R2.0、EC20 R2.1&a…

Linux--进程地址空间

1.线程地址空间 所谓进程地址空间&#xff08;process address space&#xff09;&#xff0c;就是从进程的视角看到的地址空间&#xff0c;是进程运行时所用到的虚拟地址的集合。 简单地说&#xff0c;进程就是内核数据结构和代码和本身的代码和数据&#xff0c;进程本身不能…

代码随想录第29天|491.递增子序列,46.全排列,47.全排列II

491.递增子序列 491. 递增子序列 这道题的特点是有序的子序列(不能对原数组排序)&#xff0c;最终结果集res不能有重复子集。所以这道题又是子集又是去重 回溯三部曲 1.递归函数参数 本题求子序列&#xff0c;很明显一个元素不能重复使用&#xff0c;所以需要startIndex&a…

【C++练习】普通方法+利用this 设置一个矩形类(Rectangle), 包含私有成员长(length)、 宽(width), 定义一下成员函数

题目 设置一个矩形类(Rectangle), 包含私有成员长(length)、 宽(width), 定义成员函数: void set_ len(int l); //设置长度 设置宽度void set_ wid(int w); 获取长度: int get len(); 获取宽度: int get _wid); 显示周长和面积: v…

汽车电子笔记之:AUTOSAR方法论及基础概念

目录 1、AUTOSAR方法论 2、AUTOSAR的BSW 2.1、MCAL 2.2、ECU抽象层 2.3、服务层 2.4、复杂驱动 3、AUTOSAR的RTE 4、AUTOSAR的应用层 4.1、SWC 4.2、AUTOSAR的通信 4.3、AUTOSAR软件接口 1、AUTOSAR方法论 AUTOSAR为汽车电子软件系统开发过程定义了一套通用的技术方法…

分布式事务篇-2.4 Spring-Boot整合Seata

文章目录 前言一、pom jar导入:二、项目配置&#xff1a;2.1 配置 说明&#xff1a;2.1 .1 seata server 端:2.1 .2 seata client 端: 2.2 开启seata 对于数据源的代理:2.3 seata-client 的注册中心&#xff1a;2.4 seata-client 的配置中心&#xff1a;2.5 去掉手写的数据源代…

二叉树链式结构的实现

文章目录 1.前置说明 2.二叉树的遍历 文章内容 1.前置说明 学习二叉树的基本操作前&#xff0c;需先要创建一棵二叉树&#xff0c;然后才能学习其相关的基本操作。由于现在我们对于二叉树的了解还处于初级阶段&#xff0c;所以我们手动创建一棵简单的二叉树&#xff0c;以便…

javeee eclipse项目导入idea中

步骤一 复制项目到idea工作空间 步骤二 在idea中导入项目 步骤三 配置classes目录 步骤四 配置lib目录 步骤五 添加tomcat依赖 步骤六 添加artifacts 步骤七 部署到tomcat

电商项目part06 微服务网关整合OAuth2.0授权中心

微服务网关整合 OAuth2.0 思路分析 网关整合 OAuth2.0 有两种思路&#xff0c;一种是授权服务器生成令牌, 所有请求统一在网关层验证&#xff0c;判断权 限等操作&#xff1b;另一种是由各资源服务处理&#xff0c;网关只做请求转发。 比较常用的是第一种&#xff0c;把API网关…

认识Mybatis的关联关系映射,灵活关联表对象之间的关系

目录 一、概述 ( 1 ) 介绍 ( 2 ) 关联关系映射 ( 3 ) 关联讲述 二、一对一关联映射 2.1 数据库创建 2.2 配置文件 2.3 代码生成 2.4 编写测试 三、一对多关联映射 四 、多对多关联映射 给我们带来的收获 一、概述 ( 1 ) 介绍 关联关系映射是指在数据库中&…

RH1288V3 - 初识物理服务器

如果你拥有一台物理服务器(不是云服务器) 个人比较推荐你用物理服务器&#xff0c;虽然性能会比云要来的差&#xff0c;但是不用每月交钱上。云服务固然方便&#xff0c;但是几个核的性能和一点存储&#xff0c;想做一个动漫网站固然要很多mp4这种影视资源&#xff0c;云服务器…