精准化糖尿病知识问答(LLM+机器学习预测模型)

精准化糖尿病知识问答(LLM+机器学习预测模型)

关键词:精准化;糖尿病(慢病)

这里主要是对APP部署途径的叙述,在这之前讨论两个问题:

  1. 慢性疾病适用什么样的预测模型。对于糖尿病等慢病来说,诊断是容易的,比如糖尿病在空腹血糖值达到一定的水平即可诊断,高血压也是如此,所以制作慢病类的诊断预测模型必要性不大,又因为慢病重在预防,所以制作cox类的预测模型预先估计一段时间后慢病发生的风险,就有一定的用途。

  2. 精准化如何实现?仅仅知道患病风险大还不够,还要知道哪些因素造成了风险,所以在做出风险估计之后,还需要做归因,即分析出当前指标对于预测结果的贡献大小,以便有的放矢地改善不良指标,而达到预防的目的。又因为人与人或者不同阶段的不良指标是不同的,归因分析要求个性化以实现精准化预防。

以上过程可以通过构建COX机器学习模型+SHAP分析来实现,是目前比较成熟的技术,此处主要叙述以以上工作为基础的APP部署的实现。

实现过程分为三个步骤:

1. API部署糖尿病cox预测模型

采用fastapi包来部署预测模型,预测模型中实现了3个API,分别是预测第3年的患病风险,预测第5年的患病风险,给出SHAP分析变量的归因结果。

宝塔面板部署API,联合内网穿透实现外网访问,这样就可以在千帆平台中引用API。

机器学习部署中需要注意问题就是算力有一定的要求,所以在一些算力较小的环境下可能部署不聊,比如免费的Render账号。

2. 千帆平台构建应用

将预测模型API构建成组件,以便应用访问。可以有多种设计,原先的设计是用户输入时间后给出特定时间的患病风险,后来感觉容易引起大模型的误会,所以采用了目前的设计,输入数据给出第3年和第五年的患病风险以及归因结果。牺牲了自由度,降低了出错的可能性。

应用中还加入了另外组件,健康小助手,以便回答相对专业一点的医疗问题,解释结果并根据结果给出个性化的预防建议。

注意选择高级一点的LLM,有助于理解数据的处理。
在这里插入图片描述

3.构建streamlit应用

第二步结束以后已经可以进行问答,但是APP样式和部署途径是固定的,如果说想实现更加样式个性化以及更多的部署途径,可以使用streamlit等工具进行包装,仅仅复制了千帆应用的问答。

streamlit的chat功能感觉样式不多,也可以选择gradio等。

APP访问地址:https://stdiabetes.streamlit.app/
在这里插入图片描述

总结

对于慢性疾病来说,通过COX预测模型预测未来一段时间内的患病风险是更适合的模式,结合模型解释分析可以实现个性化、精准化地预防。
LLM+API可以看作是部署机器学习模型的另外一种形式,与纯streamlit等可视化的形式相比,在处理和展示图片等方面有所削弱,但是在结果的整理和解释方面有独特的优势。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10727.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

本地部署DeepSeek

1、打开ollama,点击“Download” Ollamahttps://ollama.com/ 2、下载完成后,安装ollama.exe 3、安装完成后,按"windowsR",输入"cmd” 4、输入“ollama -v”,查看版本,表示安装成功 5、返回ollama网页&#xff0c…

“harmony”整合不同平台的单细胞数据之旅

其实在Seurat v3官方网站的Vignettes中就曾见过该算法,但并没有太多关注,直到看了北大张泽民团队在2019年10月31日发表于Cell的《Landscap and Dynamics of Single Immune Cells in Hepatocellular Carcinoma》,为了同时整合两类数据&#xf…

【后端开发】字节跳动青训营Cloudwego脚手架

Cloudwego脚手架使用 cwgo脚手架 cwgo脚手架 安装的命令: GOPROXYhttps://goproxy.cn/,direct go install github.com/cloudwego/cwgolatest依赖thriftgo的安装: go install github.com/cloudwego/thriftgolatest编辑echo.thrift文件用于生成项目&…

Flutter_学习记录_Tab的简单Demo~真的很简单

1. Tab的简单使用了解 要实现tab(选项卡或者标签视图)需要用到三个组件: TabBarTabBarViewTabController 这一块,我也不知道怎么整理了,直接提供代码吧: import package:flutter/material.dart;void main() {runApp(MyApp());…

PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(上.文章部分)

一、引言 1.1 研究背景与意义 在数字化时代,医疗行业正经历着深刻的变革,智能化技术的应用为其带来了前所未有的发展机遇。随着医疗数据的指数级增长,传统的医疗诊断和治疗方式逐渐难以满足现代医疗的需求。据统计,全球医疗数据量预计每年以 48% 的速度增长,到 2025 年将…

华硕笔记本装win10哪个版本好用分析_华硕笔记本装win10专业版图文教程

华硕笔记本装win10哪个版本好用?华硕笔记本还是建议安装win10专业版。Win分为多个版本,其中家庭版(Home)和专业版(Pro)是用户选择最多的两个版本。win10专业版在功能以及安全性方面有着明显的优势&#xff…

Longformer:处理长文档的Transformer模型

Longformer:处理长文档的Transformer模型 摘要 基于Transformer的模型由于自注意力操作的二次复杂度,无法处理长序列。为了解决这一限制,我们引入了Longformer,其注意力机制与序列长度呈线性关系,使其能够轻松处理数…

第5章 公共事件

HarmonyOS通过公共事件服务为应用程序提供订阅、发布、退订公共事件的能力。 5.1 公共事件概述 在应用里面,往往会有事件。比如,朋友给我手机发了一条信息,未读信息会在手机的通知栏给出提示。 5.1.1 公共事件的分类 公共事件&#xff08…

(三)QT——信号与槽机制——计数器程序

目录 前言 信号(Signal)与槽(Slot)的定义 一、系统自带的信号和槽 二、自定义信号和槽 三、信号和槽的扩展 四、Lambda 表达式 总结 前言 信号与槽机制是 Qt 中的一种重要的通信机制,用于不同对象之间的事件响…

【开源免费】基于SpringBoot+Vue.JS体育馆管理系统(JAVA毕业设计)

本文项目编号 T 165 ,文末自助获取源码 \color{red}{T165,文末自助获取源码} T165,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)

春节忙完一轮,总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。 这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论,所以像相机矩阵推导这种网上已经很多优质文章的内容,笔者就一笔带过。 然而关于负缩放&#xf…

[论文阅读] (37)CCS21 DeepAID:基于深度学习的异常检测(解释)

祝大家新春快乐,蛇年吉祥! 《娜璋带你读论文》系列主要是督促自己阅读优秀论文及听取学术讲座,并分享给大家,希望您喜欢。由于作者的英文水平和学术能力不高,需要不断提升,所以还请大家批评指正&#xff0…

AutoDL 云服务器:xfce4 远程桌面 终端乱码 + 谷歌浏览器

/usr/bin/google-chrome-stable --no-sandbox --proxy-server"127.0.0.1:7890" 打开新的PowerShell ssh -p 54521 rootconnect.yza1.seetacloud.com /opt/TurboVNC/bin/vncserver -kill :1 rm -rf /tmp/.X1* USERroot /opt/TurboVNC/bin/vncserver :1 -desktop …

Contrastive Imitation Learning

机器人模仿学习中对比解码的一致性采样 摘要 本文中,我们在机器人应用的对比模仿学习中,利用一致性采样来挖掘演示质量中的样本间关系。通过在排序后的演示对比解码过程中,引入相邻样本间的一致性机制,我们旨在改进用于机器人学习…

DeepSeek 遭 DDoS 攻击背后:DDoS 攻击的 “千层套路” 与安全防御 “金钟罩”

当算力博弈升级为网络战争:拆解DDoS攻击背后的技术攻防战——从DeepSeek遇袭看全球网络安全新趋势 在数字化浪潮席卷全球的当下,网络已然成为人类社会运转的关键基础设施,深刻融入经济、生活、政务等各个领域。从金融交易的实时清算&#xf…

【二叉搜索树】

二叉搜索树 一、认识二叉搜索树二、二叉搜索树实现2.1插入2.2查找2.3删除 总结 一、认识二叉搜索树 二叉搜索树(Binary Search Tree,简称 BST)是一种特殊的二叉树,它具有以下特征: 若它的左子树不为空,则…

FreeRTOS学习 --- 中断管理

什么是中断? 让CPU打断正常运行的程序,转而去处理紧急的事件(程序),就叫中断 中断执行机制,可简单概括为三步: 1,中断请求 外设产生中断请求(GPIO外部中断、定时器中断…

使用 Ollama 和 Kibana 在本地为 RAG 测试 DeepSeek R1

作者:来自 Elastic Dave Erickson 及 Jakob Reiter 每个人都在谈论 DeepSeek R1,这是中国对冲基金 High-Flyer 的新大型语言模型。现在他们推出了一款功能强大、具有开放权重的思想链推理 LLM,这则新闻充满了对行业意味着什么的猜测。对于那些…

灵芝黄金基因组注释-文献精读109

The golden genome annotation of Ganoderma lingzhi reveals a more complex scenario of eukaryotic gene structure and transcription activity 灵芝(Ganoderma lingzhi)的黄金基因组注释揭示了更复杂的真核基因结构和转录活性情况 摘要 背景 普遍…

【回溯+剪枝】组合问题!

文章目录 77. 组合解题思路:回溯剪枝优化 77. 组合 77. 组合 ​ 给定两个整数 n 和 k,返回范围 [1, n] 中所有可能的 k 个数的组合。 ​ 你可以按 任何顺序 返回答案。 示例 1: 输入:n 4, k 2 输出: [[2,4],[3,…