本篇将紧接上篇的2D版本对3D版的负缩放矩阵进行解读。
(6.1):负缩放,负定矩阵和行列式的关系(2D版本)
既然three.js对3D版的负缩放也使用行列式进行判断,那么,2D版的结论用到3D上其实是没毛病的,THREE.Line2出问题,是因为顶点生成规则跟Mesh不一致。而我们上篇提到的案例,则是用了2D平面的绕序来套到3D上,想必也是不合理的。
下面我们先针对上篇最后提到的问题做一个测试用例
<!DOCTYPE html>
<html>
<head><meta charset="UTF-8"><title>three_3Ddeterminant</title><style>body {margin: 0;overflow: hidden;}</style><script src="three/build/three.js"></script><script src="three/examples/js/controls/OrbitControls.js"></script>
</head><body><script>var scene = new THREE.Scene();var container = new THREE.Object3D();scene.add(container);var geometry = new THREE.PlaneGeometry(100, 50);var material = new THREE.MeshBasicMaterial({color: 0x993300, side:THREE.DoubleSide});var mesh = new THREE.Mesh(geometry, material);mesh.position.z = 100;container.add(mesh);var geometryBack = new THREE.PlaneGeometry(50, 100);var materialBack = new THREE.MeshBasicMaterial({color: 0x006600, side:THREE.DoubleSide});var meshBack = new THREE.Mesh(geometryBack, materialBack);meshBack.position.z = 90;container.add(meshBack);var width = window.innerWidth; var height = window.innerHeight; var camera = new THREE.PerspectiveCamera(60, width / height, 1, 20000);camera.position.set(0, 0, 500); var renderer = new THREE.WebGLRenderer();renderer.setSize(width, height);renderer.setClearColor(0x000000, 1); document.body.appendChild(renderer.domElement); function render() {container.rotation.y += Math.PI / 180;renderer.render(scene, camera);requestAnimationFrame(render);}render();var controls = new THREE.OrbitControls(camera,renderer.domElement);controls.addEventListener('change', render);</script>
</body>
</html>
现在我给两个面片都开启了双面渲染,并且让面片所在的容器一直绕y轴旋转,让大家大致了解这个测试用例的结构。
真正测试的时候,我会把红色设置为正面,绿色设置为反面,效果如下。
可见,容器旋转到正面时,红色面显示绿色面隐藏,反过来则显示绿色面。
单改容器的rotation虽然按我们的理解是一个正定矩阵,但当它的rotation.y在90度到270度之间时,点的绕序确实发生了变更,所以也隐藏了,这跟我们在上篇2D版本上的结论不吻合。
然后我们再试试不旋转,而是改scale:
var t = 0;function render() {t += 3 * Math.PI / 180;container.scale.z = Math.sin(t);renderer.render(scene, camera);requestAnimationFrame(render);
}
缩放的情况,点的绕序没发生变更,但是正反面却也交替了。
是不是有点神奇?嗯看来是我们对3D绕序的理解不正确。
为了方便观察,我们把面片的xy向量绘制到容器上进行观察。与此同时,既然我们是研究3D的版本,那么我们直接用THREE.AxisHelper把z轴也一并绘制出来(红绿蓝分别代表xyz)。
var axisHelper = new THREE.AxisHelper(300);
axisHelper.position.z = 100;
container.add(axisHelper);
接下来,为了让每条轴在不同的视角下都能看得见,我们再让相机的位置适当偏移一下
camera.position.set(100, 150, 500);
然后,旋转和缩放的情况我们都看一下
咦这下我们似乎看出了一点端倪来,不管是通过旋转到达背面还是缩放到达背面,蓝线都是朝着屏幕向里,这时候用蓝线判断正反面似乎更为合理。
没错!我们抛开绕序,返璞归真,重新审视一下正反面,无非就是个朝向问题。而作为面片的法线——垂直于面片的蓝线正好与之相匹配。
我们再取个静止的图像看看
初始状态
旋转180度
scaleZ = -1
初始时,x轴正向到y轴正向是逆时针旋转,z轴向前
旋转180度时,x到y变成顺时针,z轴同时变成向后
scaleZ=-1时,x到y的旋转方向不变,但z轴向后了
这么一看,旋转似乎是负负得正的结果,而z方向缩放-1的操作,则只有一个负向的变换。
事实上,图2和图3的两个坐标轴是无法只通过旋转而完全重合。它就像我们的左右手,以及基于左右手定义的坐标系一样,是镜像关系。
顺带说句废话:如果您是名学霸或者读的专业跟化学有关系的话,您大概还会知道对映异构体这个词。它其实也是这种镜像关系,不同绕序化学性质也不一样,因此有的药名会带着左旋右旋这样的字眼。希望这个例子能帮助一部分小伙伴理解镜像变换。
笔者直接从百度百科偷了个图过来,让大家更形象的理解两套坐标系跟我们的左右手一样无法完全重合,总有一个方向是反的。
讲了这么多,我们对3D绕序的定义是时候跟2D区分开来了。它应该基于3个轴,如果定义右手坐标系为正绕序,那左手坐标系就是负绕序。
three.js使用的是右手坐标系,大家比划一下就可以发现,旋转180度后,坐标系仍为右手,而缩放-1的则把坐标系变成右手了。
因此对于3D版本的正负定矩阵,我们有这样的一个性质。
如果一个矩阵M可以把一个3维坐标系从左手坐标系变成右手坐标系,或者反过来,则矩阵M为负定矩阵,无更改则为正定矩阵,变换到共线共点就是零定矩阵。
下面我们就来推导一下,更改坐标系绕序(左右手方向)的矩阵是不是也正好对应上行列式的值。
初始时,x轴向量为(1,0,0),y轴向量为(0,1,0),z轴向量是(0,0,1),如果矩阵是负定矩阵,那么不管你如何去旋转它尝试让它跟变换前重合,就会发现总会有一个轴会变反的,这里我们取z为变反的轴。但是我们不能直接说它就是(0, 0, -1),因为可能会被拉长,缩短或者扭曲。但不管怎样,这个轴变换后的结果一定是跟初始方向不一致,也就是夹角大于90度。
这里想搞得通用点,也可以用任意的3个不共面向量来做推导,但是看上篇的2D版的式子都比较繁琐了,这里就还是不要折磨大家。
先来说步骤:
1 给定初始向量x(1,0,0),y(0,1,0),z(0,0,1),对xy做3D向量的叉乘(3D叉乘的结果为同时垂直于x和y的一个向量)计算,结果为(0,0,1),跟初始z的方向一致,也就是说,初始状态的坐标轴绕序为正(演算过程从略)
2 给定矩阵M,对初始点o(0,0,0),初始点x(1,0,0),初始点(0,1,0),初始点(0,0,1)做变换,得到新点o',x',y',z',同时算出向量o'x',o'y',o'z'
3 对o'x',o'y'做叉乘运算,得到向量V,判断它跟o'z'的夹角是否大于90度,可通过向量点乘运算求得,大于0为小于90度,小于0则相反
4 点乘结果的正负即为矩阵缩放的正负
下面就让我们开始吧!
4*4矩阵对点的变换计算如下所示(按照前面2D版的经验,本次直接给最后一行填充单位矩阵的数值)
3D向量点乘和叉乘的公式也在此处给出
点乘:
叉乘:
下面我们分别计算矩阵对4个点变换的结果。
可以看到,这个变换跟2D的真的很像,都是最后一列完全一样,所以在计算向量的过程中,最后一列会被完全消去。
得到的向量为
嗯,果然用给定的特殊坐标算出来的值简单很多。有兴趣的小伙伴可以自行捣鼓一般坐标的演算,笔者就不发上来折磨大家了。
下面我们算o'x'和o'y'的叉乘值,公式前面已给出,这里我们直接套用。
然后再跟o'z'做点乘运算
这两步计算连一起可称为向量的混合积
然后你会很惊喜地发现,向量混合积的结果跟4*4矩阵中前3阶的行列式一点不差!
加的部分
减的部分
同样地,three.js也严格按照4阶行列式定义书写Matrix4的determinant,跟2D版本一样,在最后一行用单位矩阵填充时,4*4的结果跟3*3是没有区别的。
然而4*4直接按定义写,跟3*3相比,多项式的项数会从6个飙升到24个。对性能来说并不友好。
所以我们看到three.js给的实现和注释给出的链接的写法是不太一样的。
该实现用了行列式的余子式写法(不懂的可以自行百度)把4*4行列式化为4个3阶,并且很巧妙地取到最后一行和一列作为剔除因子。因为在考察3D绕序,不研究透视w因子的情况下,最后一列一定是单位矩阵的数值,0,0,0,1,懂得编译原理的朋友应该就会明白,n41,n42和n43这3部分会因为第一个数为0而会对后面的运算过程做优化(当然脚本语言未必优化得彻底哈)。所以这一写法可以体现出three.js开发团队的功力确实够深的,这个细节优化也做到位了。
而3*3矩阵的行列式,就没有做这样的优化,大概是这里还没遇到瓶颈吧,换写法未必合适。
当然这里让笔者有点困惑,求逆的时候它也拿了余子式写法,并且取的不是最后一行最后一列,就有点谜,是怎么样顺手就怎么样写么?欢迎大佬们留言讨论。
写了这么多,结论是证明出来了,用左右手坐标系的方式定义3D绕序后,绕序,正负缩放,正负定矩阵是完全等价的。
回过头来说说2D,2D的叉乘是个阉割版,因为运算过程中通常不想扩展到3D,所以结果是一个数而非一个向量。但严格来说,2D向量叉乘的结果,它等于跟z轴平行的向量,长度等于2D叉乘的数值。如果给2D坐标全部加上z坐标,赋值为0,大家就会发现,其结论跟3D版完全一致。感兴趣的读者可自行演算。
因此,2D版的正负定矩阵是3D版的一个特例,它们的原理完全一致。
下面来小结一下:
1 3D中的点绕序需要结合3轴,用跟左右手坐标系类似的方式进行定义
2 绕序有没变更可通过两向量叉乘后跟第三向量点乘求得,也就是混合积
3 混合积结果跟4*4矩阵前3阶行列式一致
4 矩阵的正负缩放完全跟3*3矩阵的秩(或者最后一行填充了单位矩阵的4*4的秩)的符号直接对应
5 3D正负定矩阵的性质:正定矩阵不修改坐标系的左右手方向(绕序),负定矩阵会修改,零定矩阵会把坐标系压缩为共面,共线或者共点。零定矩阵不可逆。
好了,折腾完这波理论,下篇就暂时不折磨大家了,换回踩坑经验方面的分享。感谢小伙伴们的支持和关注,我们下篇再见!