自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import precision_score, recall_score, f1_score# 数据准备
class1_points = np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])
class2_points = np.array([[3.2, 3.2],[3.7, 2.9],[3.2, 2.6],[1.7, 3.3],[3.4, 2.6],[4.1, 2.3],[3.0, 2.9]])x_train = np.concatenate((class1_points, class2_points), axis=0)
y_train = np.concatenate((np.zeros(len(class1_points)), np.ones(len(class2_points))))x_train_tensor = torch.tensor(x_train, dtype=torch.float32)
y_train_tensor = torch.tensor(y_train, dtype=torch.float32)# 设置随机种子
seed = 42
torch.manual_seed(seed)# 定义模型
class LogisticRegreModel(nn.Module):def __init__(self):super(LogisticRegreModel, self).__init__()self.fc = nn.Linear(2, 1)def forward(self, x):x = self.fc(x)x = torch.sigmoid(x)return xmodel = LogisticRegreModel()# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = optim.SGD(model.parameters(), lr=0.05)# 训练模型
epochs = 1000
for epoch in range(1, epochs + 1):y_pred = model(x_train_tensor)loss = criterion(y_pred, y_train_tensor.unsqueeze(1))optimizer.zero_grad()loss.backward()optimizer.step()if epoch % 50 == 0 or epoch == 1:print(f"epoch: {epoch}, loss: {loss.item()}")# 保存模型
torch.save(model.state_dict(), 'model.pth')# 加载模型
model = LogisticRegreModel()
model.load_state_dict(torch.load('model.pth'))
# 设置模型为评估模式
model.eval()# 进行预测
with torch.no_grad():y_pred = model(x_train_tensor)y_pred_class = (y_pred > 0.5).float().squeeze()# 计算精确度、召回率和F1分数
precision = precision_score(y_train_tensor.numpy(), y_pred_class.numpy())
recall = recall_score(y_train_tensor.numpy(), y_pred_class.numpy())
f1 = f1_score(y_train_tensor.numpy(), y_pred_class.numpy())print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1 Score: {f1:.4f}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/10882.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

< OS 有关 > 阿里云 几个小时前 使用密钥替换 SSH 密码认证后, 发现主机正在被“攻击” 分析与应对

信息来源: 文件:/var/log/auth.log 因为在 sshd_config 配置文件中,已经定义 LogLevel INFO 部分内容: 2025-01-27T18:18:55.68272708:00 jpn sshd[15891]: Received disconnect from 45.194.37.171 port 58954:11: Bye Bye […

[创业之路-270]:《向流程设计要效率》-2-企业流程架构模式 POS架构(规划、业务运营、支撑)、OES架构(业务运营、使能、支撑)

目录 一、POS架构 二、OES架构 三、POS架构与OES架构的差异 四、各自的典型示例 POS架构典型示例 OES架构典型示例 示例分析 五、各自的典型企业 POS架构典型企业 OES架构典型企业 分析 六、各自典型的流程 POS架构的典型流程 OES架构的典型流程 企业流程架构模式…

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)

✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:贪心算法篇–CSDN博客 文章目录 一.贪心算法1.什么是贪心算法2.贪心算法的特点 二.例题1.柠…

Python 梯度下降法(二):RMSProp Optimize

文章目录 Python 梯度下降法(二):RMSProp Optimize一、数学原理1.1 介绍1.2 公式 二、代码实现2.1 函数代码2.2 总代码 三、代码优化3.1 存在问题3.2 收敛判断3.3 函数代码3.4 总代码 四、优缺点4.1 优点4.2 缺点 五、相关链接 Python 梯度下…

【2025年更新】1000个大数据/人工智能毕设选题推荐

文章目录 前言大数据/人工智能毕设选题:后记 前言 正值毕业季我看到很多同学都在为自己的毕业设计发愁 Maynor在网上搜集了1000个大数据的毕设选题,希望对大家有帮助~ 适合大数据毕业设计的项目,完全可以作为本科生当前较新的毕…

three.js+WebGL踩坑经验合集(6.2):负缩放,负定矩阵和行列式的关系(3D版本)

本篇将紧接上篇的2D版本对3D版的负缩放矩阵进行解读。 (6.1):负缩放,负定矩阵和行列式的关系(2D版本) 既然three.js对3D版的负缩放也使用行列式进行判断,那么,2D版的结论用到3D上其实是没毛病的,THREE.Li…

反向代理模块jmh

1 概念 1.1 反向代理概念 反向代理是指以代理服务器来接收客户端的请求,然后将请求转发给内部网络上的服务器,将从服务器上得到的结果返回给客户端,此时代理服务器对外表现为一个反向代理服务器。 对于客户端来说,反向代理就相当…

软件工程经济学-日常作业+大作业

目录 一、作业1 作业内容 解答 二、作业2 作业内容 解答 三、作业3 作业内容 解答 四、大作业 作业内容 解答 1.建立层次结构模型 (1)目标层 (2)准则层 (3)方案层 2.构造判断矩阵 (1)准则层判断矩阵 (2)方案层判断矩阵 3.层次单排序及其一致性检验 代码 …

【回溯】目标和 字母大小全排列

文章目录 494. 目标和解题思路:回溯784. 字母大小写全排列解题思路:回溯 494. 目标和 494. 目标和 给你一个非负整数数组 nums 和一个整数 target 。 向数组中的每个整数前添加 或 - ,然后串联起所有整数,可以构造一个 表达式…

告别复杂,拥抱简洁:用plusDays(7)代替plus(7, ChronoUnit.DAYS)

前言 你知道吗?有时候代码里的一些小细节看起来很简单,却可能成为你调试时的大麻烦。在 Java 中,我们用 LocalDateTime 进行日期和时间的操作时,发现一个小小的替代方法可以让代码更简洁,功能更强大。这不,今天我们就来探讨如何用 LocalDateTime.now().plusDays(7) 替代…

《苍穹外卖》项目学习记录-Day10订单状态定时处理

利用Cron表达式生成器生成Cron表达式 1.处理超时订单 查询订单表把超时的订单查询出来&#xff0c;也就是订单的状态为待付款&#xff0c;下单的时间已经超过了15分钟。 //select * from orders where status ? and order_time < (当前时间 - 15分钟) 遍历集合把数据库…

【深度分析】微软全球裁员计划不影响印度地区,将继续增加当地就业机会

当微软的裁员刀锋掠过全球办公室时&#xff0c;班加罗尔的键盘声却愈发密集——这场资本迁徙背后&#xff0c;藏着数字殖民时代最锋利的生存法则。 表面是跨国公司的区域战略调整&#xff0c;实则是全球人才市场的地壳运动。微软一边在硅谷裁撤年薪20万美金的高级工程师&#x…

Linux中 端口被占用如何解决

lsof命令查找 查找被占用端口 lsof -i :端口号 #示例 lsof -i :8080 lsof -i :3306 netstat命令查找 查找被占用端口 netstat -tuln | grep 端口号 #示例 netstat -tuln | grep 3306 netstat -tuln | grep 6379 ss命令查找 查找被占用端口 ss -tunlp | grep 端口号 #示例…

qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记

qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记 文章目录 qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记1.例程运行效果2.例程缩略图3.项目文件列表4.main.qml5.main.cpp6.CMakeLists.txt 1.例程运行效果 运行该项目需要自己准备一个模型文件 2.例程缩略图…

高性能消息队列Disruptor

定义一个事件模型 之后创建一个java类来使用这个数据模型。 /* <h1>事件模型工程类&#xff0c;用于生产事件消息</h1> */ no usages public class EventMessageFactory implements EventFactory<EventMessage> { Overridepublic EventMessage newInstance(…

Spring Boot项目如何使用MyBatis实现分页查询

写在前面&#xff1a;大家好&#xff01;我是晴空๓。如果博客中有不足或者的错误的地方欢迎在评论区或者私信我指正&#xff0c;感谢大家的不吝赐教。我的唯一博客更新地址是&#xff1a;https://ac-fun.blog.csdn.net/。非常感谢大家的支持。一起加油&#xff0c;冲鸭&#x…

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南

1.27 线性代数王国&#xff1a;矩阵分解实战指南 #mermaid-svg-JWrp2JAP9qkdS2A7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JWrp2JAP9qkdS2A7 .error-icon{fill:#552222;}#mermaid-svg-JWrp2JAP9qkdS2A7 .erro…

EasyExcel使用详解

文章目录 EasyExcel使用详解一、引言二、环境准备与基础配置1、添加依赖2、定义实体类 三、Excel 读取详解1、基础读取2、自定义监听器3、多 Sheet 处理 四、Excel 写入详解1、基础写入2、动态列与复杂表头3、样式与模板填充 五、总结 EasyExcel使用详解 一、引言 EasyExcel 是…

FIDL:Flutter与原生通讯的新姿势,不局限于基础数据类型

void initUser(User user); } 2、执行命令./gradlew assembleDebug&#xff0c;生成IUserServiceStub类和fidl.json文件 3、打开通道&#xff0c;向Flutter公开方法 FidlChannel.openChannel(getFlutterEngine().getDartExecutor(), new IUserServiceStub() { Override void…

DIFY源码解析

偶然发现Github上某位大佬开源的DIFY源码注释和解析&#xff0c;目前还处于陆续不断更新地更新过程中&#xff0c;为大佬的专业和开源贡献精神点赞。先收藏链接&#xff0c;后续慢慢学习。 相关链接如下&#xff1a; DIFY源码解析