计算机竞赛 基于机器视觉的二维码识别检测 - opencv 二维码 识别检测 机器视觉

文章目录

  • 0 简介
  • 1 二维码检测
  • 2 算法实现流程
  • 3 特征提取
  • 4 特征分类
  • 5 后处理
  • 6 代码实现
  • 5 最后

0 简介

🔥 优质竞赛项目系列,今天要分享的是

基于机器学习的二维码识别检测 - opencv 二维码 识别检测 机器视觉

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 二维码检测

物体检测就是对数字图像中一类特定的物体的位置进行自动检测。基本的检测框架有两种:

一种是以滑动窗口为单位对图像进行扫描,对扫描所得的每个子图像提取特征,并用学习到的分类器来分类该特征并且判断该子图像是否为所检测的特定物体。对象检测的一个问题是,对象在图片中的位置和尺度是未知的。算法被要求能够检测各种不同位置、不同大小的对象,这样的特性被称为位置无关性和尺度无关性。为了达到这样的特性,常见的方法是使用多尺度框架,即:通过缩放原始图像,产生一组大小不同的图像序列,然后在序列的每幅图像中都使用固定尺寸
W×H
的滑动窗口,检测算法将判断每次滑动窗口所截取的图像子窗口是否存在目标对象。滑动窗口解决了位置无关性;而图像序列中存在至少一幅图像,其包含的目标对象的尺度符合滑动窗口的尺度,这样一个图像金字塔序列解决了尺度无关性。

另一种则是在整幅图像上首先提取兴趣点,然后仅对提取出来的兴趣点分类。

因此学长把物体检测方法分为基于滑动窗口的物体检测和基于兴趣点的物体检测两类。

无论是哪种做法,整个过程都可以分为特征提取和特征分类这两个主要阶段。也就是说,物体检测的主要问题是使用什么样的特征和使用什么样的分类器。

物体检测的难点在于如何用有限的训练集来学习到鲁棒的、可以适用到各种情况下的分类器。这里所说的各种情况包括有:图像中物体的大小不同;光照条件的差异所引起的图像明暗的不同;物体在图像中可能存在的旋转和透视情况;同类物体间自身存在的差异。

这里学长以定位二维码 / 条形码为例,简述基于机器学习实现物体检测的大致算法流程。

2 算法实现流程

算法流程图如下图所示:

在这里插入图片描述

我们先把输入图像分成 25×25
的图像子块。把图像子块作为特征提取和特征分类这两个模块的基本处理对象,即对图像子块进行纹理特征提取,特征分类时判定当前处理的图像子块是否属于二维条形码的一部分

在这里插入图片描述

在特征提取模块中,我们使用纹理特征提取算法从原始输入图像中提取出多分辨率直方

在特征分类时,我们希望保留所有属于二维条形码的图像子块,同时去除所有属于背景的图像子块。在该模块中,我们使用了自适应 Spatialboost 算法。

下图为经过这步处理后的理想输出结果,图中被标记的小方块表示他们属于二维条形码的一部分。

在这里插入图片描述

3 特征提取

图像的纹理特征可以描述物体特有的属性,用以区别其他物体。纹理特征总体可分为空域和频域两大类。在本文算法中,我们采用的纹理特征均属于空域的纹理特征,也是局部特征,它们分别是多分辨率直方图特征、局部二值模式特征和边缘方向直方图特征。

多分辨率直方图特征具备旋转无关的特点。这种纹理特征保留了灰度直方图特征计算简单和保存方便的特点。同时它又可以描述纹理的局部信息,弥补了传统的灰度直方图特征的缺点。

局部二值模式特征是一种计算复杂度较低的局部特征,它具有明暗无关和旋转无关的特点。
边缘方向直方图特征与全局的光照变化是无关的,它可以提取出二维条形码纹理的几何特点。

4 特征分类

学长开发的算法所使用的分类器为自适应 Spatialboost 算法,这是对 Spatialboost
算法的一个改进。使用这个分类器是由二维条形码的特点以及我们算法框架的特点所决定的。由于我们把原始输入图像分为若干大小固定的图像子块,属于二维条形码的图像子块在空间上有很强的关联性,或者说这些属于二维条形码的图像子块都是紧密相邻的。同时由于图像子块的尺寸不大,它所包含的信息量相对较少,有的时候就很难把属于二维条形码的图像子块和属于背景的图像子块区分开(它们在特征空间上可能重叠)。如果我们可以利用子块在空间上的联系,把空间信息加入到分类器中,将有利于提高分类器的准确率。

适应 Spatialboost
算法可以同时利用纹理特征以及子块在空间上的联系,在训练过程中,将纹理特征和空间信息自适应的结合起来训练分类器。这样,当前处理的子块的分类结果不仅依赖于它自己的纹理特征,还和它周围子块的分类结果密切相关。当属于背景的图像子块的纹理特征很接近于属于二维条形码的图像子块时,我们还是可以依靠和它相邻的背景子块来对它做出正确的分类。

5 后处理

经过特征提取和特征分类两个模块后,我们得到了对图像子块的分类结果,但最后我们期望得到的是对二维条形码的包围盒。在我们的设置下,自适应Spatialboost
分类器对背景子块的分类相当严格,此时对属于二维条形码的图像子块会有部分漏检发生,

在这里插入图片描述

因此在后处理模块中,我们先使用一种自适应聚类算法,对分类后的结果进一步改进,来精确的覆盖整个二维条形码。特征分类后定位到的子块的大小为
25×25,我们把这些子块再划分为 10×10 的小方块。接着以得到的 10×10 的子块为种子,用子块灰度值的方差为衡量标准往外聚类,聚类时的阈值设定为:

在这里插入图片描述

其中 M 是聚类开始时作为种子的子块的个数,k 为调整系数,在本文算法中 k设置为 0.5,Var 和 Mean
分别表示子块灰度值的均值和方差。由公式(3-1)可知,每幅图像的聚类阈值是自适应的计算得来的。聚类开始时首先从种子子块出发,计算它们周围的子块的灰度值方差,如果大于聚类阈值就把它标识为属于二维条形码,重复这个过程直到周围再没有子块符合聚类条件。图
3-5
是聚类算法的部分结果,第一行的图像是特征分类后的结果,准确的定位到了一部分二维条形码,但是没有完全的覆盖整个二维条形码,不利于我们输出最后的定位包围盒。第二行为聚类后的结果,可以看到小块几乎完全覆盖了整个二维条形码,此时再把这些小块合并为一个平行四边形就很方便了。

在这里插入图片描述

聚类后定位出来的小块基本上覆盖了整个二维条形码,最后我们只需要把定位出的小包围盒合并为大包围盒,并输出最后的定位结果。整个后处理流程见图

在这里插入图片描述

6 代码实现

这里演示条形码的检测效果:
在这里插入图片描述

关键部分代码实现:


# import the necessary packages
import numpy as np
import argparse
import cv2

# construct the argument parse and parse the arguments
# ap = argparse.ArgumentParser()
# ap.add_argument("-i", "--image", required = True, help = "path to the image file")
# args = vars(ap.parse_args())# load the image and convert it to grayscale
image = cv2.imread('./images/2.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# compute the Scharr gradient magnitude representation of the images
# in both the x and y direction
gradX = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 1, dy = 0, ksize = -1)
gradY = cv2.Sobel(gray, ddepth = cv2.CV_32F, dx = 0, dy = 1, ksize = -1)# subtract the y-gradient from the x-gradient
gradient = cv2.subtract(gradX, gradY)
gradient = cv2.convertScaleAbs(gradient)# blur and threshold the image
blurred = cv2.blur(gradient, (9, 9))
(_, thresh) = cv2.threshold(blurred, 225, 255, cv2.THRESH_BINARY)# construct a closing kernel and apply it to the thresholded image
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (21, 7))
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)# perform a series of erosions and dilations
closed = cv2.erode(closed, None, iterations = 4)
closed = cv2.dilate(closed, None, iterations = 4)# find the contours in the thresholded image, then sort the contours
# by their area, keeping only the largest one
(cnts, _) = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
c = sorted(cnts, key = cv2.contourArea, reverse = True)[0]# compute the rotated bounding box of the largest contour
rect = cv2.minAreaRect(c)
box = np.int0(cv2.boxPoints(rect))

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/109111.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用锐捷RG-EG210G-E路由器实现两个IP地址冲突的局域网互通

需求背景: 之前写过一篇博文使用路由器实现三个不同网段局域网内的计算机相互访问,链接如下 https://blog.csdn.net/agang1986/article/details/131862160 当前的需求又发生了变更,有两个独立的局域网,内部的计算机个数和配置的IP…

C语言(第三十三天)

3.1.2 画图推演 3.2 举例2:顺序打印一个整数的每一位 输入一个整数m,打印这个按照顺序打印整数的每一位。 比如: 输入:1234 输出:1 2 3 4 输入:520 输出:5 2 0 3.2.1 分析和代码实现 这个题目&a…

方案:AI边缘计算智慧工地解决方案

一、方案背景 在工程项目管理中,工程施工现场涉及面广,多种元素交叉,状况较为复杂,如人员出入、机械运行、物料运输等。特别是传统的现场管理模式依赖于管理人员的现场巡查。当发现安全风险时,需要提前报告&#xff0…

javaCV实现java图片ocr提取文字效果

引入依赖&#xff1a; <dependency><groupId>org.bytedeco</groupId><artifactId>javacv-platform</artifactId><version>1.5.5</version></dependency> 引入中文语言训练数据集&#xff1a;chi_sim GitHub - tesseract-ocr…

windows下如何搭建属于自己的git服务器

前一阵子公司需要&#xff0c;领导让我给我们技术部搭建一个git服务器。以前看过教程&#xff0c;但自己没动手做过&#xff0c;开始按照网上的教程来&#xff0c;但搭建过程中发现还是不够详细&#xff0c;今天给大家一个比较详细的&#xff0c;希望对大家有帮助。 高能预警&a…

容器化微服务:用Kubernetes实现弹性部署

随着云计算的迅猛发展&#xff0c;容器化和微服务架构成为了构建现代应用的重要方式。而在这个过程中&#xff0c;Kubernetes&#xff08;常简称为K8s&#xff09;作为一个开源的容器编排平台&#xff0c;正在引领着容器化微服务的部署和管理革命。本文将深入探讨容器化微服务的…

关于 Camera 预览和录像画质不一样的问题分析

1、问题背景 基于之前安卓平台的一个项目&#xff0c;客户有反馈过一个 Camera app 预览的效果&#xff0c;和录像效果不一致的问题。 这里的预览是指打开 Camera app 后直接出图的效果&#xff1b;录像的效果则是指打开 Camera app 开启录像功能&#xff0c;录制一段视频&…

数据库——Redis 没有使用多线程?为什么不使用多线程?

文章目录 Redis6.0 之后为何引入了多线程&#xff1f; 虽然说 Redis 是单线程模型&#xff0c;但是&#xff0c; 实际上&#xff0c;Redis 在 4.0 之后的版本中就已经加入了对多线程的支持。 不过&#xff0c;Redis 4.0 增加的多线程主要是针对一些大键值对的删除操作的命令&a…

嵌入式linux之QT交叉编译环境搭建(最简单实测通用版)

这里总结下用于嵌入式linux下的QT交叉编译环境搭建&#xff0c;留作备忘&#xff0c;分享给有需要的小伙伴。不管你的是什么嵌入式linux环境&#xff0c;实测过的通用方法总结。 环境准备 需要准备的环境要求如下&#xff1a; 1.虚拟机(vmvare15.5) 2.ubuntu18.04-x64的linu…

Linux 基金会宣布正式进驻中国

在 LinuxCon 2017 &#xff08;北京&#xff09;即将召开前夕&#xff0c;我们Linux 中国会同 51CTO、开源中国对 Linux 基金会执行董事 Jim Zemlin 进行了一场远跨大洋的视频专访。 在这次专访中&#xff0c;Jim 先生回答了几个开源界和互联网领域关注的问题&#xff0c;并披…

Vue3.0极速入门 - 登录demo

Talk is cheap, Show the code 在完成npm和vue的环境安装&#xff0c;并了解了基本的目录和文件结构以后&#xff0c;直接写一个带登录和首页的demo做示例&#xff0c;快速了解一个vue工程的创建和基本的页面跳转 第一步创建工程 1、选择手动模式创建工程 npm create app-…

云服务器(Centos7系统)配置JAVA+mysql+tomcat 环境

文章主要内容来源云服务器&#xff08;Centos7系统&#xff09;部署javaweb项目&#xff08;二&#xff09;配置JAVAmysqltomcat 环境_man_zuo的博客-CSDN博客 模仿途中遇到的问题 连接无效 有时连接无法下载&#xff0c;可能是过期了&#xff0c;将其更换为官网给的下载连接即…

五、Kafka消费者

目录 5.1 Kafka的消费方式5.2 Kafka 消费者工作流程1、总体流程2、消费者组原理3、消费者组初始化流程4、消费者组详细消费流程 5.3 消费者API1 独立消费者案例&#xff08;订阅主题&#xff09;2 独立消费者案例&#xff08;订阅分区&#xff09;3 消费者组案例 5.4 生产经验—…

4.22 TCP 四次挥手,可以变成三次吗?

目录 为什么 TCP 挥手需要四次呢&#xff1f; 粗暴关闭 vs 优雅关闭 close函数 shotdown函数 什么情况会出现三次挥手&#xff1f; 什么是 TCP 延迟确认机制&#xff1f; TCP 序列号和确认号是如何变化的&#xff1f; 在一些情况下&#xff0c; TCP 四次挥手是可以变成 T…

冲破时代鸿沟,Linus和Eversheet,杰出程序员的创新成果

在80年代末&#xff0c;电脑技术的普及程度与今日相较&#xff0c;犹如鸿沟天堑。那时&#xff0c;计算机对大多数人来说还是稀罕物&#xff0c;尤其在像中国这样的发展中国家。 与如今充满信息的网络环境相比&#xff0c;那个时代没有Web&#xff0c;没有Google等搜索引擎&am…

Docker安装并配置Pushgateway

Linux下安装Docker请参考&#xff1a;Linux安装Docker 简介 Pushgateway是Prometheus的一个组件&#xff0c;prometheus server默认是通过Exporter主动获取数据&#xff08;默认采取pull拉取数据&#xff09;&#xff0c;Pushgateway则是通过exporter主动方式推送数据到Pushg…

SQLmap使用

文章目录 利用sqlmap 注入得到cms网站后台管理员账密获取数据库名称获取cms数据库的表名获取users表中的字段&#xff08;内容&#xff09;获取username字段和password字段的内容 salmap破解psot请求数据包salmap获取getshell 利用sqlmap 注入得到cms网站后台管理员账密 获取数…

机器人制作开源方案 | 桌面级机械臂--本体说明+驱动及控制

一、本体说明 1. 机械臂整体描述 该桌面级机械臂为模块化设计&#xff0c;包含主机模块1个、转台模块1个、二级摆动模块1个、可编程示教盒1个、2种末端执行器、高清摄像头&#xff0c;以及适配器、组装工具、备用零件等。可将模块快速组合为一个带被动关节的串联3自由度机械臂…

Maven详解

文章目录 一、引言1.1 为什么需要 Maven&#xff1f;1.2 Maven 解决了哪些问题&#xff1f;1.2.1 添加第三方jar包1.2.2 jar包之间的依赖关系1.2.3 处理jar包之间的冲突1.2.4 获取第三方jar包1.2.5 将项目拆分成多个工程模块1.2.6 实现项目的分布式部署 二、介绍三、Maven 的特…

python数组基本使用

使用Numpy进行数组运算 相比 List&#xff0c;NumPy 数组的优势 NumPy 全称为 Numerical Python&#xff0c;是 Python 的一个以矩阵为主的用于科学计算的基础软件包。NumPy 和 Pandas、Matpotlib 经常结合一起使用&#xff0c;所以被人们合称为数据分析三剑客。Numpy 中有功能…