pytorch生成对抗网络

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。这两个网络通过对抗过程共同训练,从而使生成器能够生成越来越真实的假数据。

GAN的基本工作原理:

  1. 生成器(G):它的任务是生成与真实数据相似的假数据。生成器通常从一个随机噪声(例如,均匀分布或高斯分布的噪声)开始,经过多层神经网络的处理,输出伪造的数据样本。

  2. 判别器(D):它的任务是区分输入数据是来自真实数据分布,还是生成器伪造的假数据。判别器通常是一个二分类器,其输出是一个表示“真实”或“假”的概率值。

训练过程:

  • 对抗过程:生成器和判别器相互博弈。生成器希望生成尽可能像真的数据,以骗过判别器;而判别器希望准确区分真假数据。最终,生成器会通过优化损失函数,使得生成的数据与真实数据尽可能相似,判别器的性能则被提升到一个极限,使得它不能再轻易地区分真假数据。
  • 数学公式:

  • 判别器的目标是最大化其输出的正确分类概率,即区分真假数据。
  • 生成器的目标是最小化其输出的“假数据”被判定为假的概率。

常见的GAN变种:

  1. DCGAN(Deep Convolutional GAN):使用卷积神经网络(CNN)来增强生成器和判别器的表现。
  2. WGAN(Wasserstein GAN):引入了Wasserstein距离,改进了训练稳定性。
  3. CycleGAN:能够在没有成对样本的情况下进行图像到图像的转换,例如将马变成斑马。

以下是一个简化的PyTorch GAN实现的框架,生成一个语音的梅尔频谱(假设已经处理了音频并提取了梅尔频谱特征)

import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import matplotlib.pyplot as plt# 生成器(Generator)
class Generator(nn.Module):def __init__(self, z_dim=100):super(Generator, self).__init__()self.fc = nn.Sequential(nn.Linear(z_dim, 128),nn.ReLU(),nn.Linear(128, 256),nn.ReLU(),nn.Linear(256, 512),nn.ReLU(),nn.Linear(512, 1024),nn.ReLU(),nn.Linear(1024, 80),  # 80表示梅尔频谱的时间步(例如:80个梅尔频率)nn.Tanh()  # 生成梅尔频谱,范围在[-1, 1]之间)def forward(self, z):return self.fc(z)# 判别器(Discriminator)
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.fc = nn.Sequential(nn.Linear(80, 512),  # 输入为梅尔频谱的时间步nn.LeakyReLU(0.2),nn.Linear(512, 256),nn.LeakyReLU(0.2),nn.Linear(256, 1),nn.Sigmoid()  # 输出判定是“真”还是“假”)def forward(self, x):return self.fc(x)# 初始化生成器和判别器
z_dim = 100
generator = Generator(z_dim)
discriminator = Discriminator()# 优化器
lr = 0.0002
g_optimizer = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))# 损失函数
criterion = nn.BCELoss()# 加载数据(假设已经提取了梅尔频谱特征,取一个示例)
def load_example_mel_spectrogram():# 假设这是一个真实梅尔频谱的示例,实际数据应从音频文件中提取mel = torch.rand((80))  # 生成一个假的梅尔频谱数据return mel.unsqueeze(0)  # 扩展维度以适应网络# 训练GAN
num_epochs = 1000
for epoch in range(num_epochs):# 真实数据real_data = load_example_mel_spectrogram()real_labels = torch.ones(real_data.size(0), 1)  # 标签为1表示真实数据# 假数据z = torch.randn(real_data.size(0), z_dim)  # 随机噪声fake_data = generator(z)fake_labels = torch.zeros(real_data.size(0), 1)  # 标签为0表示假数据# 训练判别器discriminator.zero_grad()real_loss = criterion(discriminator(real_data), real_labels)fake_loss = criterion(discriminator(fake_data.detach()), fake_labels)d_loss = (real_loss + fake_loss) / 2d_loss.backward()d_optimizer.step()# 训练生成器generator.zero_grad()g_loss = criterion(discriminator(fake_data), real_labels)  # 生成器希望判别器判定为真实g_loss.backward()g_optimizer.step()if epoch % 100 == 0:print(f"Epoch [{epoch}/{num_epochs}], D Loss: {d_loss.item()}, G Loss: {g_loss.item()}")# 可视化生成的梅尔频谱(只显示最后一次生成的结果)if epoch == num_epochs - 1:plt.figure(figsize=(10, 4))plt.imshow(fake_data.detach().numpy(), aspect='auto', origin='lower')plt.title(f"Generated Mel Spectrogram - Epoch {epoch}")plt.colorbar()plt.show()# 测试阶段:使用训练好的生成器进行语音生成
z_test = torch.randn(1, z_dim)  # 创建一个新的随机噪声向量
generated_mel_spectrogram = generator(z_test)# 可视化生成的梅尔频谱
plt.figure(figsize=(10, 4))
plt.imshow(generated_mel_spectrogram.detach().numpy(), aspect='auto', origin='lower')
plt.title("Generated Mel Spectrogram from Test Data")
plt.colorbar()
plt.show()

解释:

  1. 测试阶段

    • 在训练完成后,我们使用一个新的随机噪声向量z_test来生成一个新的梅尔频谱。
    • generated_mel_spectrogram = generator(z_test)是生成梅尔频谱的过程。
  2. 可视化

    • 使用plt.imshow()来可视化生成的梅尔频谱图,origin='lower'是确保频谱图正确显示。
    • plt.colorbar()添加颜色条,以便更清晰地理解梅尔频谱的数值范围。

结果:

  • 在训练过程中,你会看到每个epoch的损失值,并在最后一次epoch时显示生成的梅尔频谱。
  • 在测试阶段,生成器会基于随机噪声生成一个新的梅尔频谱并进行可视化,帮助你观察最终模型生成的语音特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11067.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AIGC技术中常提到的 “嵌入转换到同一个向量空间中”该如何理解

在AIGC(人工智能生成内容)技术中,“嵌入转换到同一个向量空间中”是一个核心概念,其主要目的是将不同类型的输入数据(如文本、图像、音频等)映射到一个统一的连续向量空间中,从而实现数据之间的…

芯片AI深度实战:给vim装上AI

系列文章: 芯片AI深度实战:私有模型deep seek r1,必会ollama-CSDN博客 芯片AI深度实战:自己的AI,必会LangChain-CSDN博客 芯片AI深度实战:给vim装上AI-CSDN博客 芯片AI深度实战:火的编程AI&…

汽车中控屏HMI界面,安全和便捷是设计的两大准则。

在汽车智能化的浪潮中,汽车中控屏 HMI(Human - Machine Interface,人机交互界面)界面已成为车辆与驾驶者沟通的关键桥梁。它不仅集成了众多车辆功能的控制,还承担着信息展示与交互的重任。而在其设计过程中&#xff0c…

书生大模型实战营3

文章目录 L0——入门岛git基础Git 是什么?Git 中的一些基本概念工作区、暂存区和 Git 仓库区文件状态分支主要功能 Git 平台介绍GitHubGitLabGitee Git 下载配置验证下载 Git配置 Git验证 Git配置 Git常用操作Git简易入门四部曲Git其他指令 闯关任务任务1: 破冰活动…

(9)下:学习与验证 linux 里的 epoll 对象里的 EPOLLIN、 EPOLLHUP 与 EPOLLRDHUP 的不同。小例子的实验

(4)本实验代码的蓝本,是伊圣雨老师里的课本里的代码,略加改动而来的。 以下是 服务器端的代码: 每当收到客户端的报文时,就测试一下对应的 epoll 事件里的事件标志,不读取报文内容,…

Janus-Pro 论文解读:DeepSeek 如何重塑多模态技术格局

Janus-Pro:多模态领域的璀璨新星——技术解读与深度剖析 一、引言 在人工智能的浩瀚星空中,多模态理解与生成模型犹如耀眼的星座,不断推动着技术边界的拓展。Janus-Pro作为这一领域的新兴力量,以其卓越的性能和创新的架构&#x…

好用的翻译工具

最近看到个好用的翻译工具,叫沉浸式翻译 沉浸式翻译 - 双语对照网页翻译插件 | PDF翻译 | 视频字幕翻译 我下载的是谷歌插件 点击下载插件会跳转到使用文档,跟着一步步操作即可 翻译的效果,我这里用的是免费版的,如果需要加强&…

信息学奥赛一本通 ybt 1608:【 例 3】任务安排 3 | 洛谷 P5785 [SDOI2012] 任务安排

【题目链接】 ybt 1608:【 例 3】任务安排 3 洛谷 P5785 [SDOI2012] 任务安排 【题目考点】 1. 动态规划:斜率优化动规 2. 单调队列 3. 二分答案 【解题思路】 与本题题面相同但问题规模不同的题目: 信息学奥赛一本通 1607&#xff1a…

LabVIEW无线齿轮监测系统

本案例介绍了基于LabVIEW的无线齿轮监测系统设计。该系统利用LabVIEW编程语言和改进的天牛须算法优化支持向量机,实现了无线齿轮故障监测。通过LabVIEW软件和相关硬件,可以实现对齿轮箱振动信号的采集、传输和故障识别,集远程采集、数据库存储…

Doki Doki Mods Maker小指南

-*- 做都做了,那就做到底吧。 -*- 前言: 项目的话,在莫盘里,在贴吧原帖下我有发具体地址。 这里是Doki Doki Mods Maker,是用来做DDLC Mods的小工具。 说是“Mods”,实则不然,这个是我从零仿…

Node.js——body-parser、防盗链、路由模块化、express-generator应用生成器

个人简介 👀个人主页: 前端杂货铺 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 📃个人状态: 研发工程师,现效力于中国工业软件事业 🚀人生格言: 积跬步…

三、js笔记

(一)JavaScript概述 1、发展历史 ScriptEase.(客户端执行的语言):1992年Nombas开发出C-minus-minus(C--)的嵌入式脚本语言(最初绑定在CEnvi软件中).后将其改名ScriptEase.(客户端执行的语言)Javascript:Netscape(网景)接收Nombas的理念,(Brendan Eich)在其Netscape Navigat…

JavaScript作用域详解

前言 作用域是JavaScript中一个重要的概念,它决定了变量和函数在代码中的可访问性和可见性。了解JavaScript的作用域对于编写高效、可维护的代码至关重要。本文将深入介绍JavaScript作用域相关的知识点,其中包括作用域类型,作用域链&#xff…

如何使用SliverList组件

文章目录 1 概念介绍2 使用方法3 示例代码 我们在上一章回中介绍了沉浸式状态栏相关的内容,本章回中将介绍SliverList组件.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的SliverList组件是一种列表类组件,类似我们之前介…

vsnprintf() 将可变参数格式化输出到字符数组

vsnprintf{} 将可变参数格式化输出到一个字符数组 1. function vsnprintf()1.1. const int num_bytes vsnprintf(NULL, 0, format, arg); 2. Parameters3. Return value4. Example5. llama.cppReferences 1. function vsnprintf() https://cplusplus.com/reference/cstdio/vs…

一文大白话讲清楚webpack基本使用——17——Tree Shaking

文章目录 一文大白话讲清楚webpack基本使用——17——Tree Shaking1. 建议按文章顺序从头看,一看到底,豁然开朗2. 啥叫Tree Shaking3. 什么是死代码,怎么来的3. Tree Shaking的流程3.1 标记3.2 利用Terser摇起来 4. 具体使用方式4.1 适用前提…

仿真设计|基于51单片机的温湿度、一氧化碳、甲醛检测报警系统

目录 具体实现功能 设计介绍 51单片机简介 资料内容 仿真实现(protues8.7) 程序(Keil5) 全部内容 资料获取 具体实现功能 (1)温湿度传感器、CO传感器、甲醛传感器实时检测温湿度值、CO值和甲醛值进…

几种K8s运维管理平台对比说明

目录 深入体验**结论**对比分析表格**1. 功能对比****2. 用户界面****3. 多租户支持****4. DevOps支持** 细对比分析1. **Kuboard**2. **xkube**3. **KubeSphere**4. **Dashboard****对比总结** 深入体验 KuboardxkubeKubeSphereDashboard 结论 如果您需要一个功能全面且适合…

GenAI 在金融服务领域的应用:2025 年的重点是什么

作者:来自 Elastic Karen Mcdermott GenAI 不是魔法 我最近参加了 ElasticON,我们与纽约 Elastic 社区一起度过了一天,讨论了使用检索增强生成 (retrieval augmented generation - RAG) 为大型语言模型 (large language models - LLMs) 提供…

如何对系统调用进行扩展?

扩展系统调用是操作系统开发中的一个重要任务。系统调用是用户程序与操作系统内核之间的接口,允许用户程序执行内核级操作(如文件操作、进程管理、内存管理等)。扩展系统调用通常包括以下几个步骤: 一、定义新系统调用 扩展系统调用首先需要定义新的系统调用的功能。系统…