哈工大张民:ChatGPT 之后,NLP 还有 12 个待解决命题

4d02627d0dfba86361eefc334f75877e.png

从语言模型角度看,ChatGPT 的天花板非常低,但在触及天花板之前,还有很多红利。

作者丨张民

演讲整理丨李梅

编辑丨岑峰

整理 | AI科技评论

进NLP群—>加入NLP交流群

ChatGPT在产业界掀起商业化与资本狂潮的同时,也给自然语言处理(NLP)研究界抛出了许多问题,NLP正在重新成为最热的研究领域之一,但也在面临以ChatGPT为代表的大规模预训练语言模型带来的冲击,ChatGPT将如何重塑NLP技术?NLP的下一步要如何走?

在2月24日深圳人才研修院由鹏城实验室主办的第四届OpenI/O启智开发者大会上,张民教授做了题为《语言智能与机器翻译》的主题演讲,对这一问题展开了深刻的思考。

张民教授在1991年至1997年于哈尔滨工业大学先后获学士、硕士和博士学位,长期从事自然语言处理、机器翻译和人工智能研究。在这次演讲中他谈到ChatGPT背后的NLP技术,他认为ChatGPT是一个技术、数据、算力和工程架构相结合的复杂系统,它的能力来自于基础模型、指令学习和强化学习。NLP人要有复杂系统的观念。

在他看来,ChatGPT给NLP研究者带来的不是威胁,而是为NLP提供了新机会、新研究范式,可更好地解决NLP问题,同时扩大了NLP研究领域,为NLP领域提出了更多待解决的命题,如研究新一代语言大模型、保证模型的可信与安全、提高模型的复杂推理能力和可解释性、增强模型对人类意志的学习、发展多模态大模型等等。

以下是张民教授本次主题演讲的原文,AI科技评论做了不改变原意的编辑:

1

ChatGPT:NLP 技术的一大步

打开了通用AI的大门

在讲这次报告的内容之前,我先就ChatGPT谈几个观点。

第一,要高度认可、拥抱、跟踪而不是跟风跨时代的以ChatGPT为代表的新一代NLP/AI技术。

第二,跟踪之后,要在OpenAI的这个大模型基础上做创新性研究。很多人担心,在大模型的时代,NLP是不是不需要再做了,其实完全不是,我们要做的事情更多,而且极多。

大家想一下我们的人脑是怎么学习语言的,3岁小孩的语言能力已经很强了,但人脑只有5%的神经元被激活进行语言相关的活动,小孩是怎么做到举一反三的?我们人类学语言是真正去理解,自顶向下和自底向上相结合的学习方式,具有演绎、归纳、推理、联想、举一反三的能力。而ChatGPT是自底向上学习。所以未来的语言模型一定不是ChatGPT这个样子。

本次报告要讲的,是我觉得未来5至10年甚至20年以ChatGPT为代表的NLP要解决的问题。先讲什么是ChatGPT,再讲什么是语言模型、ChatGPT能给NLP什么启发。

首先来讲什么是ChatGPT。第一点,ChatGPT做的事就是使机器像人一样与人对话、交流。自然语言是人类交流最方便、最重要的媒介,语言是用来描述知识和传承文化的工具。因此,ChatGPT很快就被大众迅速接受,所以说ChatGPT是人投票投出来的,这也是ChatGPT能如此之火的一个很重要的原因。

ChatGPT的本质是大规模预训练语言模型,是一个统一的、极简的大模型,这是第二点。

第三个关键点,就是ChatGPT做的是一个NLP问题,但是大家一定要意识到它是一个技术+数据+算力+工程结构的复杂系统。

经常有人问我,ChatGPT带给我们的经验是什么?我通俗地讲,自然语言处理干三件事:让机器听懂人话(理解)、讲人话(生成)、干人事(应用)。相应地,ChatGPT的惊艳之处是什么?第一,非常强的语言理解能力和生成能力,理解人类的意图,然后侃侃而谈,娓娓道来;第二,它能把伦理、道德等方面的不当内容去掉,并可拒绝回答;第三,它使用了三项技术,包括表示学习、注意力机制和学习人类意志,没有这些技术就没有大模型,更没有ChatGPT。

非严格讲,“学习人类意志”是ChatGPT这类模型所独有的,这个说法听起来很高大上,其实就是通过算法调整模型参数,进而让机器知道人到底想要机器做什么、怎么能干好。

ChatGPT的理论基础是什么?就是从语料当中学东西。语料数据里面能蕴涵多少知识,ChatGPT最多就能拥有多少知识。从这个角度看,ChatGPT因此也是一个知识工程。所以语料库语言学、认知语言学和计算语言学是ChatGPT的语言学理论基础。如果你相信语言能够表达知识,那么ChatGPT就能学会其中的知识。

所以我们对ChatGPT的一个评价是:NLP技术的一大步,开启了AGI(通用人工智能)的一扇门。

2

ChatGPT 背后的语言模型

只要上过中学、学过中文或英文,大家就都知道,语言模型包括词、短语、句法结构、语义和篇章等不同层面。从另外一个角度讲,语言模型涵盖很多种表示方法,比如产生式、逻辑、谓词、框架等等。从知识表述的角度看,语言模型则包括规则、统计和神经网络的方法。

抽象讲,语言模型是计算机表示和处理自然语言的数学模型。语言模型是一个单纯的、统一的、抽象的形式化系统,自然语言经过语言模型的描述,就能被计算机处理了,因此语言模型对于自然语言处理极其重要。

那么ChatGPT所用的语言模型是什么?它的语言模型其实早在上世纪七八十年代就有了,即当时语音识别领域最常用的N-gram语言模型。ChatGPT是一种基于N-gram的生成式语言模型。比如,在一个句子中,第二个词的概率以第一个词为基础,第三个词的概率以前两个词为基础,如此类推。公式极其简单,ChatGPT所干的唯一一件事,就是学一堆神经网络参数,给定前N个词,预测下一个词是什么。比如“Where are we (going)”这个句子,ChatGPT会对所有可能的词的概率进行从低到高的排序,根据它的模型预测出第四个词是going的概率最大。

大家想一想,为什么只做这一件事就能够实现复杂对话?只是如此简单地预测下一个词,为何它就能这么惊艳,能够写文章、对话、编程序、制表等等?有一个经典的“猴子打字机悖论”,如果你给一个猴子无限长的时间,让它在键盘上敲打,它就能在某个时间点写出一部莎士比亚全集。这是没错的,从数学的角度讲一定能实现。

ChatGPT就相当于一只猴子,把词随意地组合起来,但ChatGPT的好处是什么?猴子需要无限长的时间,它也并不知道打出哪个字最好,而ChatGPT有非常强的预测下一个词的能力,只要给它上文,它就能对下一个词进行精准预测。ChatGPT写一篇论文的时候,给人感觉是一气呵成,实际上这时候它绝对不是简单地给定前一个N个词预测下一个词,而是已经隐含在语言模型中地编码了这篇文章的结构。写一篇学术论文一定要布局好结构,ChatGPT就是根据这个布局来工作的。ChatGPT最擅长的就是写作,侃侃而谈,“编故事”。

那么ChatGPT的原理到底是什么?有三个方面:基础模型,指令学习,强化学习。

基础模型使ChatGPT具备强大的能力。有了能力就是有了力气,但有了力气还不知道到底能干什么,指令学习就是让模型知道干什么,强化学习则是让模型干得更好。还有一个人类反馈,即奖励模型,是为了强化学习用的,用奖励模型去做强化学习,希望ChatGPT做到跟人类一样、符合人类的意志。就像高文老师讲的,ChatGPT太讨好人类,表面上看是这样,但其实我觉得问题在于训练数据、奖励模型和强化学习的导向以及伦理道德的因素,导致它太像人类。

ChatGPT的核心技术有两点,一个是基础模型,一个是对基础模型的人类意志对齐微调。至少从交互的角度看,微调是非常有效的。微调能做到什么效果?从交互的角度讲,它能使原本13B的模型性能达到175B模型的水平,提高10倍。而从知识的角度讲,13B的模型知识贫瘠,讲得再花言巧语也没有用。

3

大模型时代,NLP 怎么做?

目前来看,ChatGPT不能干的、干错的,比它能干的要多得多。但是大家要坚信一点,ChatGPT技术刚刚出现,那些不能干的很多问题可以很快解决。

同时,我们也应该看到ChatGPT有它的天花板,它确实是有很多问题,说一千道一万,ChatGPT本身模型能力有限,比如会出现张冠李戴的问题。像对于“1+1=2”,ChatGPT不是用计算器去算的,而是利用模型去预测1+1等于几,2出现的概率大,所以它认为是2。如果你赋予ChatGPT计算能力,那么所有数字四则运算问题它都会。

我们应该看到,ChatGPT的天花板非常低,但是在到达天花板之前,我们有很多红利。科学的进步毕竟是波浪式的。

再来谈一谈ChatGPT与语言智能和机器翻译。这个方向我已经做了几十年了,但是我觉得机器翻译是最容易被ChatGPT颠覆的,一定是。人类做翻译的时候经过语言理解和生成的过程,ChatGPT恰恰具有很强的语言理解和生成能力。目前机器翻译模型严格依赖双语数据,把机器翻译看做是一个映射过程,而不是理解和生成过程。目前机器翻译模型面临很多难以解决的问题,首先是双语数据少,还有准确性、篇章、指代、低资源领域和语种、噪声等等问题。这些问题理论和技术上都可以被大模型很好解决。

再回答一下学术界普遍关心的问题,在大模型的时代怎么去做NLP?我总结了12个问题,任何一个问题解决了我认为都具有跨时代的意义。

一、新一代语言模型。Masked LM and GLM建模能力强,但模型的描述能力非常有限,理论上几乎是所有LM中描述能力最弱的模型(除了BOW模型)。下一代可计算性更强、描述能力更强的语言模型是什么?至少不仅仅具有强大生成能力。

二、大模型时代的自然语言的深度理解(NLU)。至少从现在开始,所有的自然语言处理任务都很难绕开大模型。基于连接主义的符号主义方法应该是一个趋势。

三、可信NLP。模型输出结果可信、可验真。

四、安全可靠NLP。价值观、道德、政治、隐私、伦理等。

五、具有复杂推理能力和可解释NLP。连接主义和符号主义相结合的方法。

六、知识建模、获取和使用。模型直接融入结构化知识,或者作为功能插件。

七、具有增量学习、持续学习、人在回路能力的NLP。

八、小模型、模型编辑、领域适应、领域模型、面向特定应用和任务的模型、人类快速可干预。

九、人类意志的学习和对齐(物理、人类系统和信息智能社会的对齐)。

十、NLP引领的多模态大模型。自然语言模态偏向认知,而其他模态偏向感知。除了NLP大模型,多模态大模型更应该以NLP为引领或者基础。

十一、NLP大工程和复杂系统的理念和认知:算法模型、算力、数据、系统工程。

十二、开源、开放、共享、产业、人才、资本、政府、社会……

最后总结一下,一是非常感谢表示学习,有了它之后NLP从离散数学模型进入连续数学模型时代,得到强大的数学工具的支持,比如可导、可微、神经网络等任意连续数学函数;二是注意力和人机对齐机制,注意力拟合NLP的上下文。三是大,模型大、参数多、数据量大,由量变产生质变,涌现出各种能力。但这些才刚刚开始,成绩多,问题更多,我们可做的事情极多。下一代模型的突破将加速发展,真正迈向通用人工智能。我们也期待下一代计算机能够解决算力问题。学、产、研、用、资、政,大家要一起来做。


最后给大家推荐一下最近小编从最新的斯坦福NLP的公开课都放到了bilibili上了,都已做了中英翻译,大部分已经更新完毕了,给需要的小伙伴~

是最新的呦~

目录

  • 词向量

  • 神经分类器

  • 反向传播和神经网络

  • 句法结构

  • RNN

  • LSTM

  • 机器翻译、Seq2Seq和注意力机制

  • 自注意力和Transformer

  • Transformers和预训练

  • 问答

  • 自然语言生成

  • 指代消解

  • T5和大型预训练模型

  • 待更...

2a27ee9e858dd58df75c0347f3ec8cd2.png

点击阅读原文直达b站~


进NLP群—>加入NLP交流群

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11039.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

chatGPT真的会替代掉很多人的工作吗?

来看看ONLYOFFICE中的chatGPT能帮你做些什么 随着人工智能技术的不断发展,Chat GPT等大型语言模型已经具备了相当的语言理解和生成能力。这种技术的发展引发了一些人的担忧,他们担心这些语言模型会取代人类的工作,造成大规模的失业和社会问题…

对标ChatGPT:百度大语言模型 文心一言发布

看了发布会,总体而言感觉中规中矩,当然也显示了一些不错的能力,例如能够生成图片、视频,这是OpenAI目前没有开放的功能,百度给整合了,挺好的。但视频生成功能目前没开放体验,因为运算量太大。 很…

【自然语言处理】【ChatGPT系列】大模型的涌现能力

大语言模型的涌现能力 《Emergent Abilities of Large Language Models》 论文地址:https://arxiv.org/pdf/2206.07682.pdf 相关博客 【自然语言处理】【ChatGPT系列】WebGPT:基于人类反馈的浏览器辅助问答 【自然语言处理】【ChatGPT系列】ChatGPT的智能…

New Bing相关设置与解除聊天次数限制

最近ChatGPT相关的话题很多。之前使用了一下,感觉虽然功能很强大,但是ChatGPT只能查找2021年之前的信息,并且会编造一些虚假信息。例如让其给出一些信息的来源的时候,就会胡乱编造。 1. New Bing的优势 New Bing是ChatGPT的升级…

教育学研究生,我们能用ChatGPT这类AI工作做什么?

ChatGPT来了,在世界范围内引起了极大的震动,有人说这会引起“iPhone效应”,就是像iPhone发布一样成为一个划时代的标志。体验过ChatGPT3.5(没买会员,用不了4.0)、与ChatGPT同一个微软爸爸的新必应&#xff…

Github骚操作绑定中国+86手机号码实现两步验证

在GitHub上绑定手机号码时候,发现没有中国手机号码的选项,原因是国内手机号码接收到短信的成功率低,所以官方就直接去掉了。 事实上我们可以使用一些手段让他显示,修改网页的元素。 这就有了。 此时输入你的中国手机号码&#xff…

小型中文版聊天机器人

入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。 目录 一、简单介绍与参考鸣谢 二、数据集介绍 三、数据预处理 1、重复标点符号表达 2、英文标点符号变为中文标点符号 3、繁…

【Chatbot】2:中文聊天机器人的实现

前言: 上一篇【聊天机器人】1:DeepQA使用自己的数据集做chatbot上传后,收到了好多伙伴支持,在这里表示感谢。上一篇也遗留了一个问题——介于DeepQA是一个以英文语料为场景的聊天机器人,在中文场景应用中得到的结果却…

【chatGPT4结对编程】chatGPT4教我做图像分类

开始接触深度学习 大语言模型火了之后,我也想过是否要加入深度学习的行业当中来,一开始的想法就是AI大模型肯定会被各大厂垄断,我们作为普通应用型软件工程师直接调用api就完事,另外对自己的学历也自卑(刚刚够线的二本&#xff0…

对比体验 ChatGPT,聊聊文心一言的优缺点

在昨天文心一言发布后,我第一时间拿到了体验的资格,但第一次使用后却不禁有些失望。他的逻辑能力极度缺乏、创造力也差点意思。不过,今天再次高强度使用后,却又让我对这款产品的想法有了些许改变。 前言 将 2023 年称为 AI 纪元…

聊聊 ChatGPT 的逻辑架构与赚钱模式

先讲讲 ChatGPT 这一波 AI 浪潮的技术架构,再聊聊一些已经被市场验证可行的个人盈利模型。 一图胜千言,上图囊括了当下 AI 生成式逻辑,不管哪个产品、框架还是产品都可以找到自己的位置,抽象出来后跟一般的技术架构也没什么两样&a…

ChatGPT-4:恐怖的AI再度进化,可识别图像内容

近日,OpenAI公司发布了一款新的AI技术——ChatGPT-4,它是一种基于自然语言处理的深度学习模型,可以识别图像内容并生成相应的文字描述。ChatGPT-4的发布,标志着人工智能技术再度进化,令人恐惧。 ChatGPT-4是OpenAI公…

ChatGPT再度封号; 英伟达市值暴涨超2000亿美元

🚀 英伟达市值暴涨超2000亿美元,或将成为第一家市值破万亿美元的芯片公司 摘要:英伟达市值在一天内暴涨超2000亿美元,即将成为第一家市值破万亿美元的芯片公司。这一涨幅创下历史最大单日涨幅纪录, 背后原因是英伟达…

百川智能发布开源中英文大模型;GitHub调查显示92%的程序员使用AI编码工具;第一季度中国云服务支出增长6%丨每日大事件...

‍ ‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 企业动态 百川智能发布开源中英文大模型 6月15日,百川智能公司推出了70亿参数量的中英文预训练大模型——baichuan-7B。baichuan-7B在C-Eval、AGIEval和Gaokao中文权威评测榜单上,超过了ChatGLM-6…

谷歌地图推出、暴雪公司成立 | 历史上的今天

整理 | 王启隆 透过「历史上的今天」,从过去看未来,从现在亦可以改变未来。 今天是 2023 年 2 月 8 日,在 1999 年的今天,中国少年科学院成立。24 年前,来自北京、上海、江苏等地的 13 名少年科技爱好者从领导和专家的…

谁是全球芯片行业的“麒麟才子”?得之可得天下!

‍数据智能产业创新服务媒体 ——聚焦数智 改变商业 自从半导体技术问世以来,美国一直是该行业的领先者。它在设计、制造和市场营销方面拥有深厚的技术和经验,在全球芯片市场中占据着重要地位。与此同时,中国在过去几十年里取得了巨大的发展…

3秒即可克隆人声,母亲险些被AI“女儿”诈骗100万美元!

整理 | 朱珂欣 出品 | CSDN程序人生(ID:coder_life) 破防了,接到“女儿”的求救电话,竟不能相信自己的耳朵! 今年年初,美国亚利桑那州的 Jennifer DeStefano 就遇到了“耳听为虚”的骗局。 据…

GPT-4 挑战当老板,目标:用 100 美元生成 100000 美元!

作者 | 屠敏 出品 | CSDN(ID:CSDNnews) 几周之前,品牌设计师兼作家 Jackson Greathouse Fall 的 Twitter 粉丝还不到 4000 人。 现如今,他已拥有 10.8 万的粉丝量,迅速吸粉的背后只因为他突发奇想——“我准…

GPT-4 已经可以独立创业了,感觉自己在追剧,一个人就是一家公司

Datawhale干货 编辑:大数据文摘,来源:CSDNnews 几周之前,品牌设计师兼作家 Jackson Greathouse Fall 的 Twitter 粉丝还不到 4000 人。 现如今,他已拥有 10.8 万的粉丝量,迅速吸粉的背后只因为他突发奇想—…

AI独立开发者:一周涨粉8万赚2W美元;推特#HustleGPT GPT-4创业挑战;即刻#AIHackathon创业者在行动 | ShowMeAI周刊

👀日报&周刊合辑 | 🎡生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! 这是ShowMeAI周刊的第7期。聚焦AI领域本周热点,及其在各圈层泛起的涟漪;拆解AI独立开发者的盈利案例,关注中美AIG…