【机器学习】自定义数据集 ,使用朴素贝叶斯对其进行分类

一、贝叶斯原理

        贝叶斯算法是基于贝叶斯公式的,其公式为:

P(A\mid B)= \frac{P(B\mid A)P(A)}{P(B)}

        其中P(A)叫做先验概率,P(B\mid A)叫做条件概率,P(B)叫做观察概率,P(A\mid B)叫做后验概率,也是我们求解的结果,通过比较后验概率的大小,将后验概率最大的类别作为真实类别

二、朴素贝叶斯分类

        朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的简单概率分类算法,适用于文本分类、垃圾邮件过滤等任务。

        朴素贝叶斯的“朴素”之处在于它假设特征之间相互独立,即给定类别,一个特征的出现不影响其他特征的出现。这在现实世界中通常不成立,但在许多情况下,这种简化的假设仍然能够提供良好的分类性能。

三、自定义数据集 ,使用朴素贝叶斯对其进行分类

1、代码示例:

import numpy as np
from sklearn.naive_bayes import GaussianNB# 1. 自定义数据集
# 生成 100 个样本,每个样本有 2 个特征
X = np.random.randn(100, 2).astype(np.float32)
# 根据特征的线性组合生成标签,大于 0 标记为 1,否则标记为 0
y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.int32)# 2. 初始化朴素贝叶斯模型
model = GaussianNB()# 3. 训练模型
model.fit(X, y)# 4. 输出训练结果
print("训练完成!")
print("模型参数:")
print("类别先验概率:", model.class_prior_)
print("类别数量:", model.class_count_)
print("每个类别的均值:", model.theta_)
print("每个类别的方差:", model.sigma_)

2、代码解释

① 数据集生成
  • X = np.random.randn(100, 2).astype(np.float32)

        生成 100 个样本,每个样本有 2 个特征。

        使用 np.random.randn 生成符合标准正态分布的随机数。

  astype(np.float32) 将数据类型转换为 32 位浮点数。

  • y = (2 * X[:, 0] + 3 * X[:, 1] > 0).astype(np.int32)

        根据特征的线性组合生成标签。

        公式 2 * X[:, 0] + 3 * X[:, 1] > 0 表示特征的线性组合是否大于 0。

        大于 0 的样本标记为 1,否则标记为 0

  astype(np.int32) 将标签转换为 32 位整数。

② 初始化朴素贝叶斯模型
  • model = GaussianNB()

        使用高斯朴素贝叶斯模型(Gaussian Naive Bayes)。

        适用于连续特征数据。

③ 训练模型
  • model.fit(X, y)

        使用数据集训练模型。

        模型会计算每个类别的先验概率、均值和方差。

④ 输出训练结果
  • model.class_prior_

        输出每个类别的先验概率。

  • model.class_count_

        输出每个类别的样本数量。

  • model.theta_

        输出每个类别的均值。

  • model.sigma_

        输出每个类别的方差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/11107.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AMS仿真方法

1. 准备好verilog文件。并且准备一份.vc文件,将所有的verilog file的路径全部写在里面。 2. 将verilog顶层导入到virtuoso中: 注意.v只要引入顶层即可。不需要全部引入。实际上顶层里面只要包含端口即可,即便是空的也没事。 引入时会报warni…

OpenAI o3-mini全面解析:最新免费推理模型重磅发布

引言 2025年1月31日,OpenAI重磅发布全新推理模型o3-mini。这款模型作为OpenAI推理系列的最新突破,不仅在性能和性价比方面实现跨越式提升,更是首次全面开放免费使用。这一重大举措彰显了OpenAI在人工智能技术普及和成本优化领域的创新决心。…

文件读写操作

写入文本文件 #include <iostream> #include <fstream>//ofstream类需要包含的头文件 using namespace std;void test01() {//1、包含头文件 fstream//2、创建流对象ofstream fout;/*3、指定打开方式&#xff1a;1.ios::out、ios::trunc 清除文件内容后打开2.ios:…

TensorFlow 示例摄氏度到华氏度的转换(一)

TensorFlow 实现神经网络模型来进行摄氏度到华氏度的转换&#xff0c;可以将其作为一个回归问题来处理。我们可以通过神经网络来拟合这个简单的转换公式。 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 …

99.24 金融难点通俗解释:MLF(中期借贷便利)vs LPR(贷款市场报价利率)

目录 0. 承前1. 什么是MLF&#xff1f;1.1 专业解释1.2 通俗解释1.3 MLF的三个关键点&#xff1a; 2. 什么是LPR&#xff1f;2.1 专业解释2.2 通俗解释2.3 LPR的三个关键点&#xff1a; 3. MLF和LPR的关系4. 传导机制4.1 第一步&#xff1a;央行调整MLF4.2 第二步&#xff1a;银…

此虚拟机的处理器所支持的功能不同于保存虚拟机状态的虚拟机的处理器所支持的功能

1.问题&#xff1a;今天记录下自己曾经遇到的一个问题&#xff0c;就是复制别人虚拟机时弹出来的一个报错&#xff1a; 如图&#xff0c;根本原因就在于虚拟机版本的问题&#xff0c;无法对应的上&#xff0c;所以必须升级虚拟机。 2.问题解决&#xff1a; 1.直接点击放弃,此时…

Linux命令入门

Linux命令入门 ls命令 ls命令的作用是列出目录下的内容&#xff0c;语法细节如下: 1s[-a -l -h] [Linux路径] -a -l -h是可选的选项 Linux路径是此命令可选的参数 当不使用选项和参数,直接使用ls命令本体,表示:以平铺形式,列出当前工作目录下的内容 ls命令的选项 -a -a选项&a…

10 Flink CDC

10 Flink CDC 1. CDC是什么2. CDC 的种类3. 传统CDC与Flink CDC对比4. Flink-CDC 案例5. Flink SQL 方式的案例 1. CDC是什么 CDC 是 Change Data Capture&#xff08;变更数据获取&#xff09;的简称。核心思想是&#xff0c;监测并捕获数据库的变动&#xff08;包括数据或数…

【Redis】set 和 zset 类型的介绍和常用命令

1. set 1.1 介绍 set 类型和 list 不同的是&#xff0c;存储的元素是无序的&#xff0c;并且元素不允许重复&#xff0c;Redis 除了支持集合内的增删查改操作&#xff0c;还支持多个集合取交集&#xff0c;并集&#xff0c;差集 1.2 常用命令 命令 介绍 时间复杂度 sadd …

happytime

happytime 一、查壳 无壳&#xff0c;64位 二、IDA分析 1.main 2.cry函数 总体&#xff1a;是魔改的XXTEA加密 在main中可以看到被加密且分段的flag在最后的循环中与V6进行比较&#xff0c;刚好和上面v6数组相同。 所以毫无疑问密文是v6. 而与flag一起进入加密函数的v5就…

【etcd】二进制安装etcd

由于生产服务器不能使用yum 安装 etcd ,或者 安装的etcd 版本比较老&#xff0c;这里介绍一个使用二进制安装的方式。 根据安装文档编写一个下载脚本即可 &#xff1a; 指定 etcd 的版本 提供了两个下载地址 一个 Google 一个 Github&#xff0c; 不过都需要外网 注释掉删除保…

MediaPipe与YOLO已训练模型实现可视化人脸和手势关键点检测

项目首页 - ZiTai_YOLOV11:基于前沿的 MediaPipe 技术与先进的 YOLOv11 预测试模型&#xff0c;精心打造一款强大的实时检测应用。该应用无缝连接摄像头&#xff0c;精准捕捉画面&#xff0c;能即时实现人脸检测、手势识别以及骨骼关键点检测&#xff0c;将检测结果实时、直观地…

学术总结Ai Agent中firecrawl(大模型爬虫平台)的超简单的docker安装方式教程

之前开源了学术总结ai agent&#xff0c;但是对非计算机专业来说&#xff0c;门槛有点高&#xff0c;再加上docker hub镜像被屏蔽&#xff0c;更是不容易上手啊。也有考虑用dify或者扣子去复刻一个&#xff0c;但是从专业用户的角度出发通过界面来拖拽配置实在是不高效&#xf…

交易股指期货有什么技巧吗?

交易股指期货有啥窍门呢&#xff1f;其实啊&#xff0c;追涨杀跌这招&#xff0c;虽然能挣点小钱&#xff0c;但风险也不小&#xff0c;一不小心就可能亏大了。我说的追涨杀跌&#xff0c;不是那种天天追着价格跑的小打小闹&#xff0c;而是要看大趋势&#xff0c;做宏观操作。…

Java线程认识和Object的一些方法ObjectMonitor

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 要对Java线程有整体了解&#xff0c;深入认识到里面的一些方法和Object对象方法的区别。认识到Java对象的ObjectMonitor&#xff0c;这有助于后面的Synchron…

linux 函数 sem_init () 信号量、sem_destroy()

&#xff08;1&#xff09; &#xff08;2&#xff09; 代码举例&#xff1a; #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <semaphore.h> #include <unistd.h>sem_t semaphore;void* thread_function(void* arg) …

ComfyUI中For Loop的使用

研究了半天&#xff0c;终于弄明白了如何使用For Loop。 1、在For中节点&#xff0c;必须有输出连接到For Loop End的initial_value点&#xff0c;才能确保节点执行完毕后才 进入下一轮循环&#xff0c;否则&#xff0c;可能导致节点没执行完&#xff0c;就进入下一个循环了。…

UbuntuWindows双系统安装

做系统盘&#xff1a; Ubuntu20.04双系统安装详解&#xff08;内容详细&#xff0c;一文通关&#xff01;&#xff09;_ubuntu 20.04-CSDN博客 ubuntu系统调整大小&#xff1a; 调整指南&#xff1a; 虚拟机中的Ubuntu扩容及重新分区方法_ubuntu重新分配磁盘空间-CSDN博客 …

ASP.NET Core 启动并提供静态文件

ASP.NET Core 启动并提供静态文件 即是单个可执行文件&#xff0c;它既运行 API 项目&#xff0c;也托管 前端项目&#xff08;通常是前端的发布文件&#xff09;。 这种方式一般是通过将 前端项目 的发布文件&#xff08;例如 HTML、CSS、JavaScript&#xff09;放入 Web AP…

网络原理(3)—— 传输层详解

目录 一. 再谈端口号 二. UDP协议(用户数据报协议) 2.1 UDP协议端格式 2.2 UDP报文长度 2.3 UDP校验和 三. TCP协议(传输控制协议) 3.1 TCP协议段格式 3.2 核心机制 3.2.1 确认应答 —— “感知对方是否收到” 3.2.2 超时重传 3.3.3 连接管理 —— 三次握手与四…