机器学习基础之《分类算法(4)—案例:预测facebook签到位置》

一、背景

1、说明

2、数据集
row_id:签到行为的编码
x y:坐标系,人所在的位置
accuracy:定位的准确率
time:时间戳
place_id:预测用户将要签到的位置

3、数据集下载
https://www.kaggle.com/navoshta/grid-knn/data
国内下不了,无法收验证码,还是在csdn用积分下一个别人上传的

二、流程分析

1、获取数据

2、数据处理
目的:
    特征值
    目标值
    a.缩小数据范围
      根据坐标缩小范围
      2 < x < 2.5
      1 < y < 1.5
    b.时间戳
      time -> 年月日时分秒
      早上签到,可能是公园、通勤的路上
      周六签到,可能在商场、在家睡觉
    c.过滤签到次数少的地点
    d.数据集划分

3、特征工程
标准化

4、KNN算法预估器流程

5、模型选择与调优

6、模型评估

三、代码

1、day02_facebook_demo

import pandas as pd# 1、获取数据
data = pd.read_csv("./FBlocation/train.csv")data.head()# 2、基本的数据处理
# 1)缩小数据范围
data = data.query("x < 2.5 & x > 2 & y < 1.5 & y > 1")data# 2)处理时间特征
time_value = pd.to_datetime(data["time"], unit="s")time_value.valuesdate = pd.DatetimeIndex(time_value)data["day"] = date.daydata["weekday"] = date.weekdaydata["hour"] = date.hourdata# 3、过滤掉签到次数少的地点
place_count = data.groupby("place_id").count()["row_id"]place_count[place_count > 3].head()data_final = data[data["place_id"].isin(place_count[place_count > 3].index.values)]data_final.head()# 筛选特征值和目标值
# 特征值
x = data_final[["x", "y", "accuracy", "day", "weekday", "hour"]]
# 目标值
y = data_final["place_id"]x.head()y.head()# 数据集划分
from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(x, y)from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV# 3、特征工程:标准化
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
# 用训练集的平均值和标准差对测试集的数据来标准化
# 这里测试集和训练集要有一样的平均值和标准差,而fit的工作就是计算平均值和标准差,所以train的那一步用fit计算过了,到了test这就不需要再算一遍自己的了,直接用train的就可以
x_test = transfer.transform(x_test)
# 4、KNN算法预估器
estimator = KNeighborsClassifier()
# 加入网格搜索和交叉验证
# 参数准备
param_dict = {"n_neighbors": [1, 3, 5, 7, 9, 11]}
estimator = GridSearchCV(estimator, param_grid=param_dict, cv=10)
estimator.fit(x_train, y_train)
# 5、模型评估
# 方法1:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率为:\n", score)
#最佳参数:best_params_
print("最佳参数:\n", estimator.best_params_)
#最佳结果:best_score_
print("最佳结果:\n", estimator.best_score_)
#最佳估计器:best_estimator_
print("最佳估计器:\n", estimator.best_estimator_)
#交叉验证结果:cv_results_
print("交叉验证结果:\n", estimator.cv_results_)

2、运行结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/111842.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

做区块链卡牌游戏有什么好处?

区块链卡牌游戏是一种基于区块链技术的创新性游戏形式&#xff0c;它将传统的卡牌游戏与区块链技术相结合&#xff0c;实现了去中心化、数字化资产的交易和收集。这种新型游戏形式正逐渐在游戏行业引起了广泛的关注和热潮。本文将深入探讨区块链卡牌游戏的定义、特点以及其在未…

论文阅读 The Power of Tiling for Small Object Detection

The Power of Tiling for Small Object Detection Abstract 基于深度神经网络的技术在目标检测和分类方面表现出色。但这些网络在适应移动平台时可能会降低准确性&#xff0c;因为图像分辨率的增加使问题变得更加困难。在低功耗移动设备上实现实时小物体检测一直是监控应用的…

Java网络爬虫——jsoup快速上手,爬取京东数据。同时解决‘京东安全’防爬问题

文章目录 介绍jsoup使用1.解析url&#xff0c;获取前端代码2.解决京东安全界面跳转3.获取每一组的数据4.获取商品数据的具体信息4.最终代码 介绍 网络爬虫&#xff0c;就是在浏览器上&#xff0c;代替人类爬取数据&#xff0c;Java网络爬虫就是通过Java编写爬虫代码&#xff0…

hadoop 学习:mapreduce 入门案例一:WordCount 统计一个文本中单词的个数

一 需求 这个案例的需求很简单 现在这里有一个文本wordcount.txt&#xff0c;内容如下 现要求你使用 mapreduce 框架统计每个单词的出现个数 这样一个案例虽然简单但可以让新学习大数据的同学熟悉 mapreduce 框架 二 准备工作 &#xff08;1&#xff09;创建一个 maven 工…

【python】Leetcode(primer-dict-list)

文章目录 260. 只出现一次的数字 III&#xff08;字典 / 位运算&#xff09;136. 只出现一次的数字&#xff08;字典&#xff09;137. 只出现一次的数字 II&#xff08;字典&#xff09;169. 求众数&#xff08;字典&#xff09;229. 求众数 II&#xff08;字典&#xff09;200…

【计算机视觉】YOLO 入门:训练 COCO128 数据集

一、COCO128 数据集 我们以最近大热的YOLOv8为例&#xff0c;回顾一下之前的安装过程&#xff1a; %pip install ultralytics import ultralytics ultralytics.checks()这里选择训练的数据集为&#xff1a;COCO128 COCO128是一个小型教程数据集&#xff0c;由COCOtrain2017中…

概念解析 | 端边云协同智能计算

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:端边云协同智能计算。 揭秘边缘计算与云计算的完美融合:端边云协同智能计算 物联网学报 | “端—边—云”协同的智慧物联网 在云计算和边缘计算日益发展的背景下,如何将两者…

JVM,JRE和JDK的区别

JVM&#xff0c;JRE和JDK的区别 JVM(Java Virtual Machine&#xff0c;Java虚拟机)JREJRE目录结构 JDK JVM(Java Virtual Machine&#xff0c;Java虚拟机) Java程序的跨平台特性主要是指字节码文件可以在任何具有Java虚拟机的计算机或者电子设备上运行&#xff0c;Java虚拟机中…

maven部署

一、下载Maven 地址&#xff1a;Maven – Download Apache Maven 二、解压缩&#xff0c;设置环境变量 tar -xvf apache-maven-3.8.8-bin.tar.gz export MAVEN_HOME/opt/apache-maven-3.8.8 export PATH$MAVEN_HOME/bin:$PATH echo $MAVEN_HOME echo $PATH mvn -v

网络编程

1. 网络编程入门 1.1 网络编程概述 计算机网络 是指将地理位置不同的具有独立功能的多台计算机及其外部设备&#xff0c;通过通信线路连接起来&#xff0c;在网络操作系统&#xff0c;网络管理软件及网络通信协议的管理和协调下&#xff0c;实现资源共享和信息传递的计算机系统…

软件测试案例 | 气象探测库存管理系统的集成测试计划

将经过单元测试的模块按照设计要求连接起来&#xff0c;组成规定的软件系统的过程被称为“集成”。集成测试也被称为组装测试、联合测试、子系统测试或部件测试等&#xff0c;其主要用于检查各个软件单元之间的接口是否正确。集成测试同时也是单元测试的逻辑扩展&#xff0c;即…

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比

时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比 目录 时序预测 | MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现基于PSO-BiLSTM、BiLSTM时间序列预测对比。 1.Matlab实现PSO-BiLSTM和BiLSTM…

nlp大模型课程笔记

自然语言处理基础和应用 &#x1f446;说明之前的大模型其实有很多都是基于迁移学习的方法。 attention机制的总结&#xff0c;解决了信息瓶颈的问题。 处理词组时BPE的过程 &#x1f446;pos表示的是token所在的位置 &#x1f446;技巧是layer normalization。

SQLServer2008数据库还原失败 恢复失败

源地址&#xff1a;http://www.taodudu.cc/news/show-1609349.html?actiononClick 还原数据库问题解决方案 在还原数据库“Dsideal_school_db”时&#xff0c;有时会遇见上图中的问题“因为数据库正在使用&#xff0c;所以无法获得对数据库的独占访问权”&#xff0c;此时我们…

深度学习论文: Segment Any Anomaly without Training via Hybrid Prompt Regularization

深度学习论文: Segment Any Anomaly without Training via Hybrid Prompt Regularization Segment Any Anomaly without Training via Hybrid Prompt Regularization PDF: https://arxiv.org/pdf/2305.10724.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch Py…

Redis数据类型(list\set\zset)

"maybe its why" List类型 列表类型是⽤来存储多个有序的字符串&#xff0c;列表中的每个字符串称为元素&#xff08;element&#xff09;&#xff0c;⼀个列表最多可以存储个2^32 - 1个元素。在Redis中&#xff0c;可以对列表两端插⼊&#xff08;push&#xff09…

SpringBoot笔记——(狂神说)——待续

路线 javase: OOPmysql:持久化 htmlcssjsjquery框架:视图&#xff0c;框架不熟练&#xff0c;css不好; javaweb:独立开发MVC三层架构的网站了∶原始 ssm :框架:简化了我们的开发流程&#xff0c;配置也开始较为复杂; war: tomcat运行 spring再简化: SpringBoot - jar:内嵌tomca…

hive lateral view 实践记录(Array和Map数据类型)

目录 一、Array 1.建表并插入数据 2.lateral view explode 二、Map 1、建表并插入数据 2、lateral view explode() 3、查询数据 一、Array 1.建表并插入数据 正确插入数据&#xff1a; create table tmp.test_lateral_view_movie_230829(movie string,category array&…

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比

多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比 目录 多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预测对比预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | Matlab实现BiLSTM-Adaboost和BiLSTM多变量时间序列预…

springboot中使用ElasticSearch

引入依赖 修改我们的pom.xml&#xff0c;加入spring-boot-starter-data-elasticsearch <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId> </dependency>编写配…