<C++> STL_list

1.list的介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

2.list的使用

在学过vector接口后,list接口的使用也就非常容易了。大同小异!

构造函数

一、默认构造函数:

std::list<int> myList; // 创建一个空的整数链表

二、带有初始元素的构造函数:

std::list<int> myList = {1, 2, 3, 4, 5}; // 创建一个包含初始元素的整数链表

三、拷贝构造函数:

std::list<int> originalList = {1, 2, 3};
std::list<int> copiedList(originalList); // 通过拷贝构造函数创建一个与原链表相同的新链表

四、范围构造函数:

std::vector<int> vec = {1, 2, 3, 4, 5};
std::list<int> myList(vec.begin(), vec.end()); // 从一个范围内的元素创建链表

五、构造函数指定元素个数和值:

std::list<int> myList(5, 42); // 创建一个包含5个值为42的元素的链表

六、使用自定义分配器的构造函数:

std::allocator<int> myAllocator;
std::list<int, std::allocator<int>> myList(myAllocator); // 创建一个使用自定义分配器的链表

operator=

 list& operator= (const list& x);
#include <iostream>
#include <list>int main() {std::list<int> sourceList = {1, 2, 3, 4, 5};std::list<int> targetList;// 使用赋值运算符将源链表赋值给目标链表targetList = sourceList;// 输出目标链表的内容for (const auto& value : targetList) {std::cout << value << " ";}return 0;
}

迭代器

  1. 获取迭代器:
    • begin(): 返回指向链表第一个元素的迭代器。
    • end(): 返回指向链表尾部后一个元素的迭代器(并不指向有效元素)。
  2. 反向迭代器:
    • rbegin(): 返回指向链表最后一个元素的反向迭代器。
    • rend(): 返回指向链表头部前一个元素的反向迭代器(并不指向有效元素)。
  3. 迭代器移动操作:
    • ++iterator: 将迭代器移动到下一个元素。
    • --iterator: 将迭代器移动到前一个元素。
  4. 解引用迭代器:
    • *iterator: 获取迭代器指向的元素的值。
    • ->: 如果链表元素是对象,可以使用箭头运算符访问对象的成员。

正向迭代器遍历链表:

#include <iostream>
#include <list>int main() {std::list<int> myList = {1, 2, 3, 4, 5};// 使用迭代器遍历链表并输出元素for (std::list<int>::iterator it = myList.begin(); it != myList.end(); ++it) {std::cout << *it << " ";}// 使用 C++11 范围循环进行遍历(更简洁的方式)for (const int& value : myList) {std::cout << value << " ";}return 0;
}

反向迭代器遍历链表:

#include <iostream>
#include <list>int main() {std::list<int> myList = {1, 2, 3, 4, 5};// 使用反向迭代器遍历链表并输出元素for (std::list<int>::reverse_iterator rit = myList.rbegin(); rit != myList.rend(); ++rit) {std::cout << *rit << " ";}return 0;
}

注意: 由于 list 是双向链表,迭代器支持前进和后退操作,但不支持随机访问。

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

capacity

  • size():返回链表中的元素数量。
std::list<int> myList = {1, 2, 3, 4, 5};
std::cout << "Size of the list: " << myList.size() << std::endl;
  • empty():检查链表是否为空。
if (myList.empty()) {std::cout << "The list is empty." << std::endl;
} else {std::cout << "The list is not empty." << std::endl;
}
  • max_size():返回 std::list 可以容纳的最大元素数量,考虑到系统的限制。
std::cout << "Maximum size of the list: " << myList.max_size() << std::endl;
  • resize(size_type n)resize(size_type n, const T& value):改变链表的大小。第一个版本使用默认构造函数添加或移除元素,第二个版本将指定的值用作添加的元素值。
myList.resize(10);         // 默认构造函数添加元素
myList.resize(8, 42);      // 使用值 42 添加元素

resize的两种情况:

  1. 当所给值大于当前的size时,将size扩大到该值,扩大的数据为第二个所给值,若未给出,则默认为容器所存储类型的默认构造函数所构造出来的值。
  2. 当所给值小于当前的size时,将size缩小到该值。

element access

  • front():返回链表的第一个元素的引用。
std::list<int> myList = {1, 2, 3, 4, 5};
int firstElement = myList.front(); // 获取第一个元素的值
  • back():返回链表的最后一个元素的引用。
std::list<int> myList = {1, 2, 3, 4, 5};
int lastElement = myList.back(); // 获取最后一个元素的值

Modifiers

  • assign(): 用新的元素替换链表中的元素。
std::list<int> myList;
myList.assign({1, 2, 3, 4, 5}); // 用新元素替换现有元素
  • push_back(): 在链表末尾添加一个元素。
std::list<int> myList = {1, 2, 3};
myList.push_back(4); // 在末尾添加元素4
  • pop_back(): 移除链表末尾的元素。
std::list<int> myList = {1, 2, 3, 4};
myList.pop_back(); // 移除最后一个元素
  • push_front(): 在链表开头添加一个元素。
std::list<int> myList = {2, 3, 4};
myList.push_front(1); // 在开头添加元素1
  • pop_front(): 移除链表开头的元素。
std::list<int> myList = {1, 2, 3, 4};
myList.pop_front(); // 移除第一个元素
  • insert(): 在指定位置插入一个或多个元素。
std::list<int> myList = {1, 2, 5};
std::list<int>::iterator it = std::next(myList.begin()); // 获取第二个元素的迭代器
myList.insert(it, 3); // 在第二个位置插入元素3
  • erase(): 移除指定位置的一个或多个元素。
std::list<int> myList = {1, 2, 3, 4, 5};
std::list<int>::iterator it = std::next(myList.begin(), 2); // 获取第三个元素的迭代器
myList.erase(it); // 移除第三个元素
  • clear(): 移除所有链表中的元素,使其变为空链表。
std::list<int> myList = {1, 2, 3, 4, 5};
myList.clear(); // 清空链表中的所有元素
  • swap() :用于交换两个链表的内容
std::list<int> list1 = {1, 2, 3};
std::list<int> list2 = {4, 5, 6};
list1.swap(list2); // 交换两个链表的内容

Operations

  • remove(): 移除链表中等于指定值的所有元素。
std::list<int> myList = {1, 2, 2, 3, 4, 2, 5};
myList.remove(2); // 移除所有值为2的元素
  • sort(): 对链表中的元素进行排序。
std::list<int> myList = {3, 1, 4, 1, 5, 9, 2, 6};
myList.sort(); // 对元素进行升序排序
  • reverse(): 反转链表中的元素顺序。
std::list<int> myList = {1, 2, 3, 4, 5};
myList.reverse(); // 反转元素的顺序,变为 {5, 4, 3, 2, 1}
  • merge(): 合并两个已排序的链表。合并后的list容器仍然有序
std::list<int> list1 = {1, 3, 5};
std::list<int> list2 = {2, 4, 6};
list1.merge(list2); // 合并两个已排序的链表
  • unique(): 移除链表中的重复元素(连续重复的元素只保留一个)。
std::list<int> myList = {1, 2, 2, 3, 3, 3, 4, 5, 5};
myList.unique(); // 移除连续重复的元素,变为 {1, 2, 3, 4, 5}

splice

splice函数用于两个list容器之间的拼接,其有三种拼接方式:

  1. 将整个容器拼接到另一个容器的指定迭代器位置。
  2. 将容器当中的某一个数据拼接到另一个容器的指定迭代器位置。
  3. 将容器指定迭代器区间的数据拼接到另一个容器的指定迭代器位置。
#include <iostream>
#include <list>
using namespace std;int main() {list<int> lt1(4, 2);list<int> lt2(4, 6);lt1.splice(lt1.begin(), lt2);//将容器lt2拼接到容器lt1的开头for (auto e: lt1) {cout << e << " ";}cout << endl;//6 6 6 6 2 2 2 2list<int> lt3(4, 2);list<int> lt4(4, 6);lt3.splice(lt3.begin(), lt4, lt4.begin());//将容器lt4的第一个数据拼接到容器lt3的开头for (auto e: lt3) {cout << e << " ";}cout << endl;//6 2 2 2 2list<int> lt5(4, 2);list<int> lt6(4, 6);lt5.splice(lt5.begin(), lt6, lt6.begin(), lt6.end());//将容器lt6的指定迭代器区间内的数据拼接到容器lt5的开头for (auto e: lt5) {cout << e << " ";}cout << endl;//6 6 6 6 2 2 2 2return 0;
}

注意: 容器当中被拼接到另一个容器的数据在原容器当中就不存在了。(实际上就是将链表当中的指定结点拼接到了另一个容器当中)

remove_if

remove_if函数用于删除容器当中满足条件的元素。

#include <iostream>
#include <list>
using namespace std;bool single_digit(const int &val) {return val < 10;
}int main() {list<int> lt;lt.push_back(10);lt.push_back(4);lt.push_back(7);lt.push_back(18);lt.push_back(2);lt.push_back(5);lt.push_back(9);for (auto e: lt) {cout << e << " ";}cout << endl;              //10 4 7 18 2 5 9lt.remove_if(single_digit);//删除容器当中值小于10的元素for (auto e: lt) {cout << e << " ";}cout << endl;//10 18return 0;
}

3.list迭代器失效问题

此处可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

void TestListIterator1() {int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()) {l.erase(it);++it;}
}

erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值

改正:

void TestListIterator() {int array[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0};list<int> l(array, array + sizeof(array) / sizeof(array[0]));auto it = l.begin();while (it != l.end()) {l.erase(it++);// 或者it = l.erase(it);}
}

4.list模拟实现

在这里插入图片描述

要模拟实现list,必须要熟悉list的底层结构以及其接口的含义,通过上面的学习,这些内容已基本掌握,现 我们来模拟实现list。

代码如下:

#pragma once
#include "iterator.h"
#include <algorithm>
#include <assert.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
// list - 底层是一个双向带头循环链表
template<class T>
struct list_node {list_node *next;list_node *prev;T data;// 模板T类型,适用任何类型// 构造函数初始化列表// T()被用来初始化list_node类的data成员变量,以确保每个新创建的list_node对象都有一个合适的T类型的默认值。list_node(const T &x = T())// T()用来给自定义类型调用默认构造函数来初始化x: next(nullptr), prev(nullptr), data(x) {}
};// list类
template<class T>
class list {
public:typedef list_node<T> node;                  // 链表typedef list_iterator<T, T &, T *> iterator;// 迭代器// const迭代器 通过const T& 传给Ref ,const T* 传给Ptrtypedef list_iterator<T, const T &, const T *> const_iterator;// const迭代器 - 通过const迭代器访问的数据无法被修改typedef STL_reverse_iterator<iterator, T &, T *> reverse_iterator;// 节点初始化void empty_init() {head = new node;head->next = head;head->prev = head;}// list默认构造函数list() {empty_init();}// 利用迭代器构造函数template<class iterator>list(iterator first, iterator last) {empty_init();while (first != last) {push_back(*first);++first;}}//拷贝构造  lt2(lt1)  老方法/*list(const list<T>& lt){empty_init();for (auto e : lt){push_back(e);  //将lt的元素复制到现在的list中}}*/void swap(list<T> &tmp) {std::swap(head, tmp.head);//交换头指针}// 拷贝构造-现代方法list(const list<T> &lt) {empty_init();                     // 必须有,不然)_head就是空指针list<T> tmp(lt.begin(), lt.end());//由lt的迭代器,构造出一个tmpswap(tmp);                        //交换tmp和this->head的指针}// 赋值 lt1 = lt3                这里lt就是lt3的拷贝,lt1是thislist<T> &operator=(list<T> lt) {swap(lt);    // 交换 lt和this交换return *this;// 返回自己就是返回lt,赋值给别的对象}// 迭代器通常建议将迭代器作为值传递,而不是作为引用传递。引用会导致迭代器失效iterator begin() {return iterator(head->next);// 调用默认构造函数给node初始化}const_iterator begin() const// const修饰的函数,无法改变成员变量{return const_iterator(head->next);// 指针不能改变,但可以赋值给别人}reverse_iterator rbegin() {return reverse_iterator(head->prev);//rbegin 是最后一个数}reverse_iterator rend() {return reverse_iterator(head);//rend是头指针}iterator end() {// 双向带头循环判尾是头节点headreturn iterator(head);}const_iterator end() const {return const_iterator(head);}// pos迭代器不会失效,插入后,pos位置永远不会变,地址不变void insert(iterator pos, const T &x) {// pos是一个类node *cur = pos._node;     // 先取pos位置的节点地址node *prevnode = cur->prev;// 记录pos位置的前节点node *newnode = new node(x);prevnode->next = newnode;newnode->prev = prevnode;newnode->next = cur;cur->prev = newnode;}iterator erase(iterator pos) {if (pos != end()) {// 先记录前节点 后节点node *prevnode = pos._node->prev;node *nextnode = pos._node->next;prevnode->next = nextnode;nextnode->prev = prevnode;delete pos._node;// 返回下一个地址return iterator(nextnode);} else {perror("erase fail");exit(-1);}}void push_back(const T &x) {insert(end(), x);// 复用}void pop_back() {erase(end()--);// end()是头指针,头指针的prev是尾节点}void push_front(const T &x) {insert(begin(), x);}void pop_front() {erase(begin());}void clear() {// 清理内存 - 不清理头节点iterator it = begin();while (it != end()) {erase(it);it++;}}~list() {clear();delete head;head = nullptr;}private:node *head;// 头节点 - list只有一个数据成员,头节点
};

list的反向迭代器

通过前面例子知道,反向迭代器的++就是正向迭代器的–,反向迭代器的–就是正向迭代器的++,因此反向迭代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行 包装即可。

iterator.h:

#pragma once
template<class T>
struct list_node;//声明外部类,
// list迭代器
template<class T, class Ref, class Ptr>
struct list_iterator {typedef list_node<T> node;                  // 链表typedef list_iterator<T, Ref, Ptr> iterator;// 迭代器node *_node;                                // 迭代器里唯一的成员变量:链表指针// 迭代器默认构造函数,传的是迭代器链表指针list_iterator(node *n): _node(n) {}// 解引用 - 返回的是链表的值  Ref通过传参,T和const T 用来控制const类型和非const类型Ref operator*() {return _node->data;}//-> 返回的是链表data的地址   Ptr通过传参,T和const T 用来控制const类型和非const类型Ptr operator->() {return &_node->data;}// 前置++ 先++,在返回自己iterator &operator++() {_node = _node->next;return *this;}// 后置++  先返回 在++iterator operator++(int) {iterator tmp = *this;// 注意:临时变量,不能引用返回_node = _node->next;return tmp;// tmp是一个类,不是引用返回,返回的时候会创建一个临时类}// 前置-- 先--,在返回自己iterator &operator--() {_node = _node->prev;return *this;}// 后-- 在返回,在--iterator operator--(int) {iterator tmp = *this;_node = _node->prev;return tmp;}// pos地址++iterator &operator+(int x) {while (x--) {//*this表示迭代器里的指针,++复用前面的重载,表示指针++*this = ++*this;}return *this;}iterator &operator-(int x) {while (x--) {*this = --*this;}return *this;}// this->_node 不等于参数_nodebool operator!=(const iterator &it) {return _node != it._node;}
};//反向迭代器
template<class iterator, class Ref, class Ptr>
struct STL_reverse_iterator {iterator cur;//正向迭代器typedef STL_reverse_iterator<iterator, Ref, Ptr> reverse_iterator;STL_reverse_iterator(iterator it): cur(it) {}Ref operator*() {return *cur;//对正向迭代器解引用,就是返回node->data}reverse_iterator operator++() {--cur;return *this;}reverse_iterator operator--() {++cur;return *this;}bool operator!=(const reverse_iterator &s) {return cur != s.cur;}
};

5.list和vector对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不 同,其主要不同如下:

vectorlist
底层结构动态顺序表,一段连续空间带头结点的双向循环链表
随机访问支持随机访问,访问某个元素效率O(1)不支持随机访问,访问某个元素 效率O(N)
插入和删除任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低任意位置插入和删除效率高,不需要搬移元素,时间复杂度为 O(1)
空间利 用率底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高底层节点动态开辟,小节点容易造成内存碎片,空间利用率低, 缓存利用率低
迭代器原生态指针对原生态指针(节点指针)进行封装
迭代器失效在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代器失效,其他迭代器不受影响
使用场景需要高效存储,支持随机访问,不关心插入删除效率大量插入和删除操作,不关心随机访问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/112408.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELK日志收集系统

目录 一、概述 二、组件 一、logstash 一、工作过程 二、INPUT 三、FILETER 四、OUTPUTS 二、elasticsearch 三、kibana 三、架构类型 一、ELK 二、ELKK 三、ELFK 四、ELFKK 五、EFK 四、配置ELK日志收集系统集群实验的步骤文档 五、配置ELK日志收集系统集群 …

【JAVA基础】数据类型,逻辑控制

❤️ Author&#xff1a; 老九 ☕️ 个人博客&#xff1a;老九的CSDN博客 &#x1f64f; 个人名言&#xff1a;不可控之事 乐观面对 &#x1f60d; 系列专栏&#xff1a; 文章目录 数据类型整型变量 int长整型变量 long单精度浮点数 float双精度浮点数 double字符类型 char字节…

C#_特性反射详解

特性是什么&#xff1f; 为程序元素额外添加声明信息的一种方式。 字面理解&#xff1a;相当于把额外信息写在干胶标签上&#xff0c;然后将其贴在程序集上。 反射是什么&#xff1f; 反射是一种能力&#xff0c;运行时获取程序集中的元数据。 字面理解&#xff1a;程序运行…

oracle 启停操作

1. 监听端口启停 # 根据实际情况 切换至oracle用户 su - oracle# 状态查看 lsnrctl stat# 启动1521端口监听 lsnrctl start# 关闭1521监听 lsnrctl stop 2. 数据库服务启停 # 立即关闭服务 shutdown immediate# 启动服务 startup

QT登陆注册界面练习

一、界面展示 二、主要功能界面代码 #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QMainWindow(parent), ui(new Ui::Widget) {ui->setupUi(this);this->setFixedSize(540,410); //设置固定尺寸th…

linux下安装Mycat

1 官网下载mycat 官方网站&#xff1a; 上海云业网络科技有限公司http://www.mycat.org.cn/ github地址&#xff1a; MyCATApache GitHubMyCATApache has 34 repositories available. Follow their code on GitHub.https://github.com/MyCATApache 2 Mycat安装 1 把MyCat…

【Java】基础入门 (十六)--- 异常

1.异常 1.1 异常概述 异常是指程序在运行过程中出现的非正常的情况&#xff0c;如用户输入错误、除数为零、文件不存在、数组下标越界等。由于异常情况再程序运行过程中是难以避免的&#xff0c;一个良好的应用程序除了满足基本功能要求外&#xff0c;还应具备预见并处理可能发…

Linux服务器安装部署MongoDB数据库 – 【无公网IP远程连接】

文章目录 前言1.配置Mongodb源2.安装MongoDB数据库3.局域网连接测试4.安装cpolar内网穿透5.配置公网访问地址6.公网远程连接7.固定连接公网地址8.使用固定公网地址连接 前言 MongoDB是一个基于分布式文件存储的数据库。由 C 语言编写&#xff0c;旨在为 WEB 应用提供可扩展的高…

LeetCode-160. 相交链表

这是一道真的非常巧妙的题&#xff0c;题解思路如下&#xff1a; 如果让他们尾端队齐&#xff0c;那么从后面遍历就会很快找到第一个相交的点。但是逆序很麻烦。 于是有一个巧妙的思路诞生了&#xff0c;如果让短的先走完自己的再走长的&#xff0c;长的走完走短的&#xff0c;…

lib61850 学习笔记一 (概念)

IEC61850 定义60多种服务满足变电站通信需求。支持在线获取数据模型&#xff0c;也支持IED水平通信&#xff08;GOOSE报文&#xff09; 术语定义 间隔 bay: 变电站由据应公共功能紧密连接的子部分组成。 例如 介于进线或者 出线 和母线之间的断路器&#xff1b;二条母线之间…

mq与mqtt的关系

文章目录 mqtt 与 mq的区别mqtt 与 mq的详细区别传统消息队列RocketMQ和微消息队列MQTT对比&#xff1a;MQ与RPC的区别 mqtt 与 mq的区别 mqtt&#xff1a;一种通信协议&#xff0c;规范 MQ&#xff1a;一种通信通道&#xff08;方式&#xff09;&#xff0c;也叫消息队列 MQ…

深入解析SNMP协议及其在网络设备管理中的应用

SNMP&#xff08;Simple Network Management Protocol&#xff0c;简单网络管理协议&#xff09;作为一种用于网络设备管理的协议&#xff0c;在实现网络设备的监控、配置和故障排除方面发挥着重要的作用。本文将深入解析SNMP协议的工作原理、重要概念和功能&#xff0c;并探讨…

uniapp实现:点击拨打电话,弹出电话号码列表,可以选择其中一个进行拨打

一、实现效果&#xff1a; 二、代码实现&#xff1a; 在uni-app中&#xff0c;使用uni.showActionSheet方法实现点击拨打电话的功能&#xff0c;并弹出相关的电话列表供用户选择。 当用户选择了其中一个电话后&#xff0c;会触发success回调函数&#xff0c;并通过res.tapInde…

OpenGL精简案例一

文章目录 案例一 绘制点线面定义Renderer顶点着色器片段着色器内置的特殊变量 应用场景工具ShaderHelper工具 TextResourceReader效果图如下 结论 案例一 绘制点线面 定义Renderer import android.content.Context; import android.opengl.GLES20; import android.opengl.GLSu…

Vue3.0 新特性以及使用变更总结

Vue3.0 在2020年9月正式发布了&#xff0c;也有许多小伙伴都热情的拥抱Vue3.0。去年年底我们新项目使用Vue3.0来开发&#xff0c;这篇文章就是在使用后的一个总结&#xff0c; 包含Vue3新特性的使用以及一些用法上的变更。 图片.png 为什么要升级Vue3 使用Vue2.x的小伙伴都熟悉…

Vue中如何为Echarts统计图设置数据

在前端界面接收后端数据后&#xff0c;将数据赋值给ECharts中的data时出现了&#xff0c;数据读取失败的问题&#xff08;可能是由于数据渲染的前后顺序问题&#xff09;。后通过如下方式进行了解决&#xff1a; 1、接下来将介绍UserController中的countUsers方法&#xff0c;…

vue实现富文本

效果图展示 一、安装依赖 npm install vue-quill-editor --save二、具体使用 html <template><!-- 富文本 --><quill-editorref"myQuillEditor"v-model"content":options"editorOption"blur"onEditorBlur($event)"…

【模拟】算法实战

文章目录 一、算法原理二、算法实战1. leetcode1576 替换所有的问号2. leetcode495 提莫攻击3. leetcode6 N字形变换4. leetcode38 外观数列5. leetcode1419 数青蛙 三、总结 一、算法原理 模拟就是用计算机来模拟题目中要求的操作&#xff0c;模拟题目通常具有代码量大、操作…

Docker - Docker安装MySql并启动

因为项目需要连接数据库&#xff0c;但是远程服务器上的mysql我不知道账户和密码&#xff0c;这个时候便是docker发挥作用的关键时刻了&#xff01; 目录 docker安装安装gcc卸载老docker&#xff08;如有&#xff09;安装软件包设置镜像仓库更新yum软件包索引安装docker启动doc…

2023_Spark_实验二:IDEA安装及配置

一、下载安装包 链接&#xff1a;百度网盘 请输入提取码 所在文件夹&#xff1a;大数据必备工具--》开发工具(前端后端)--》后端 下载文件名称&#xff1a;ideaIU-2019.2.3.exe &#xff08;喜欢新版本也可安装新版本&#xff0c;新旧版本会存在部分差异&#xff09; IDEA …