openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

🧡💛💚💙💜OpenCV实战系列总目录

打印一个图片可以做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、轮廓特征与近似

1.1 轮廓特征

前面我们计算了这个图片的轮廓:

 它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数:

cnt = contours[0]
cv2.contourArea(cnt)
cv2.arcLength(cnt,True)

打印结果:

8500.5 
437.9482651948929

这是分别求出了周长和面积,这里的True表示的是否是闭合的。 

1.2 轮廓近似

 

如图,第一个图是原图,如果将它的轮廓计算出来应该是第三个图的结果,但是我不想要这样一些带坑坑洼洼的结果,我只想要图2这样的结果呢?

原图中含有一些曲线,比如有一条曲线,这条曲线有A、B两个点,先将这两个点连上,在曲线中选到一个C点,使得这个C点到AB这条直线上距离最大,如果这个距离d小于指定的阈值t,那么这个AB直线就可以当做曲线的近似了。

那如果大于设定的阈值呢?那么曲线就会被分解成两个部分变成两个曲线,AC和BC,然后AC和BC继续去做前面的判断操作一直到找到近似直线。

但是在代码的实现却非常简单:

img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

每行代码的意思:

  1. 读进来图像,还是前面的图像
  2. 做二值处理
  3. 找轮廓信息 
  4. 找出第一个轮廓
  5. 深度复制图像
  6. 提取轮廓信息
  7. 将轮廓图像打印

打印结果: 

 接下来做轮廓近似的处理:

epsilon = 0.1*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

关键代码:approx = cv2.approxPolyDP(cnt,epsilon,True)

cv2.approxPolyDP这是计算轮廓的函数,第一个参数表示计算的轮廓,第二个是指定的阈值,这个阈值是自己指定的,一般通过周长来计算,所以approx是计算的轮廓信息,再用cv2.drawContours将轮廓拟合出来,打印图像。

打印结果:

 这就是近似完的结果,这里可以调整前面计算周长的权重0.1多执行几次,这个值指定的越小结果越接近原始轮廓。

1.3 边界矩阵

 继续用上面的图片,如何将一个轮廓的外接矩形标出来呢?不废话直接上代码:

img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[5]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

前面几行都已经学习过了,直接看到这里

x,y,w,h = cv2.boundingRect(cnt)

cnt是轮廓信息,通过cv2.boundingRect可以计算出四个值x,y,w,h,一个坐标加上长宽,有这个信息就可以得到一个确定的矩形。

通过这个函数cv2.rectangle,依次传进去图像,坐标1,坐标2,颜色,线条宽度,拟合出这个轮廓

打印结果:

 计算外接矩形和原始图形的面积比值:

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

第一行是计算原始面积,第二行+第三行计算外接矩形的面积,然后计算比值打印出来:

轮廓面积与边界矩形比 0.5154317244724715

外接圆:

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

 

2、模板匹配方法

模板匹配在openCV中是非常重要的内容,和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1) 

如图这是两个图片,我需要做的是将lena脸的部分框出来,然后右图相当于是标签,假如左图是一个9*9的图像,右图是一个3*3的图像,那么左图可以分解成9个3*3的图像,将右图与这9个区域的图像进行比对,通过计算两个图像的像素匹配程度来判断是这9个区域的那一个区域,9个区域就是从左至右从上至下一个一个进行匹配。

那这个匹配程度怎么计算呢,openCV提供了多种方法来计算,比如计算对应位置之间的像素值差异,差异值就是量化匹配程度,当然差异值越小说明匹配程度越接近。具体的匹配方法:

  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

这里给出一个openCV官网链接,是上面这些匹配方法的计算公式:

OpenCV: Object Detection

分别将lena和模板(lena的脸)读进来,转化为灰度图后打印出大小:

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2]
print(img.shape)
print(template.shape)

h和w是模板的长和宽,打印的shape值为:

(263, 263)

(110, 85)

 调用模板匹配操作:

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
print(res.shape)

methods是所有方法

 cv2.matchTemplate的参数分别为原始图像、模板、匹配方法

然后打印shape值

打印结果:

(154, 179)

这里的154=263-110+1,179=263-85+1

用这个结果去定位一下最小损失的那个像素点的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)

 打印结果:

39168.0

74403584.0

(107, 89)

(159, 62)

在这个匹配方法中,我们需要的是min_loc,这个点的坐标再加上模板的长宽,就可以得到我们想要框住的区域了。

3、模板匹配效果

用6种不同的匹配方法进行模板匹配,看下结果的差异:

for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

对这个代码块逐行解释:

  1. for循环
  2. 深度复制图像
  3. 取出当前匹配方法名称(前面有一个数组存了全部的6个方法)(加上eval的原因是不能传进来一个字符串)
  4. 计算一个结果
  5. 找出最好结果和最坏结果的差异程度值和坐标
  6. 判断当前方法是算最小值为最佳结果还是最大值为最佳结果
  7. 6已解释
  8. 6已解释
  9. 6已解释
  10. 计算出右下角的坐标
  11. 通过对焦的两个点的坐标画出一个矩形将目标区域框出来
  12. 后面全是将结果打印出来

打印结果几乎都是一样的,就只列出一个了:

 左边的图好理解,就是将lena的脸框出来了,我们完成了任务,右边就是计算出了一个最亮的位置也就是前面res变量的输出结果。

没有加上归一化操作的结果会稍微差点。

同样的道理我们做一下多个模板的匹配,比如一张图上有多个模板需要全部框出来:

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

打印结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113207.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker部署前端项目保姆级教程

本地启动docker(有不会启动的吗?下载docker(小海豚)双击起来就行) 准备阿里云账号(免费) 没有就去注册一个,记住密码后面要用到 官网地址:阿里云登录 - 欢迎登录阿里云…

对比Flink、Storm、Spark Streaming 的反压机制

分析&回答 Flink 反压机制 Flink 如何处理反压? Storm 反压机制 Storm反压机制 Storm 在每一个 Bolt 都会有一个监测反压的线程(Backpressure Thread),这个线程一但检测到 Bolt 里的接收队列(recv queue)出现了…

SVN 集中式版本管理平台

1. SVN 命令行工具下载地址 https://www.visualsvn.com/downloads/ 2. 下载SVN 命令行工具后,解压后就可以了,不需要安装的 3. 将bin 文件添加到系统环境变量中,不知道怎么打开系统环境变量的自己问度娘 4. 添加到系统环境变量中,…

【Java架构-版本控制】-Git进阶

本文摘要 Git作为版本控制工具,使用非常广泛,在此咱们由浅入深,分三篇文章(Git基础、Git进阶、Gitlab搭那家)来深入学习Git 文章目录 本文摘要1. Git分支管理2. Git分支本质2.1 分支流转流程(只新增文件)2.2 分支流转流…

INDEMIND:“大+小”多机协同,实现机器人商用场景全覆盖

随着商用清洁机器人进入越来越多的场景中,单一的中型机器人并不能有效覆盖所有区域,更加细分化的产品组合正在成为新的趋势。 产品形态的“新趋势” 在商用场景中,目前的商用清洁机器人几乎均是中大型的产品形态,较大的体型意味…

JavaScript原型链污染

前言 在浏览某个论坛的时候,第一次看到了JavaScript原型链污染漏洞。当时非常的好奇,当时我一直以为js作为一种前端语言,就算存在漏洞也是针对前端,不会危害到后端,因此我以为这种漏洞危害应该不大。可当我看到他的漏…

【数学建模】-- 模糊综合评价

模糊综合评价(Fuzzy Comprehensive Evaluation)是一种用于处理不确定性和模糊性信息的决策分析方法。它通常用于解决复杂的多指标决策问题,其中各指标之间可能存在交叉影响和模糊性的情况。模糊综合评价通过将不确定性和模糊性量化&#xff0…

我的创作纪念日----探索创作之旅

创作之旅 创作之始启程追寻:寻觅灵感的起点思绪迸发:创意萌芽与滋长 创作之途探索未知:友人的帮助与指导 创作之行倾听内心:创意荒漠的探寻 主页传送门:📀 传送 创作之始 ​ ​  在我尚未察觉的瞬间&…

正中优配:A股早盘三大股指微涨 华为概念表现活跃

周三(8月30日),到上午收盘,三大股指团体收涨。其间上证指数涨0.06%,报3137.72点;深证成指和创业板指别离涨0.33%、0.12%;沪深两市合计成交额6423.91亿元,总体来看,两市个…

mysql数据库创建只读用户

只需要三步,超级简单 很详细 方法1:在linux之centos上登陆/usr/local/mysql/bin/mysql -u root -p然后输入密码:ABCD2345 这是我的密码,你要输入自己对应的root密码然后1.创建只读用户: 使用以下 SQL 命令创建一个只…

微服务学习资料

文章目录 参考资料一. 微服务概述1. CAP理论2. BASE理论3. SpringBoot 与 SpringCloud对比 二. 服务注册:Zookeeper,Eureka,Nacos,Consul1. Nacos两种健康检查方式?2. nacos中负责负载均衡底层是如何实现的3. Nacos原理4. 临时实例和持久化(非临时)实例 …

简易虚拟培训系统-UI控件的应用4

目录 Slider组件的常用参数 示例-使用Slider控制主轴 示例-Slider控制溜板箱的移动 本文以操作面板为例,介绍使用Slider控件控制开关和速度。 Slider组件的常用参数 Slider组件下面包含了3个子节点,都是Image组件,负责Slider的背景、填充区…

Linux系统:CentOS 7 CA证书服务器部署

目录 一、理论 1.CA认证中心 2.CA证书服务器部署 二、实验 1. CA证书服务器部署 三、总结 一、理论 1.CA认证中心 (1)概念 CA :CertificateAuthority的缩写,通常翻译成认证权威或者认证中心,主要用途是为用户…

MySQL数据库——DQL操作——基本查询

文章目录 前言事前准备——测试数据整表查询指定列查找别名查询MySQL运算符条件查询模糊查询排序查询聚合查询分组查询分组之后的条件筛选 分页查询将整张表的数据插入到另一张表中 前言 MySQL数据库常见的操作是增删查改,而其中数据的查询是使用最多,也…

【前端】JQ实时显示当前日期、时间、星期

效果图 html <span id"time"></span> JS // 实时显示当前时间 $(document).ready(function () {function showTime() {var today new Date;var y today.getFullYear();var M today.getMonth() 1;var d today.getDate();var w today.getDay();va…

Adapter Tuning Overview:在CV,NLP,多模态领域的代表性工作

文章目录 Delta TuningAdapter Tuning in CVAdapter Tuning in NLP Delta Tuning Adapter Tuning in CV 题目: Learning multiple visual domains with residual adapters 机构&#xff1a;牛津VGG组 论文: https://arxiv.org/pdf/1705.08045.pdf Adapter Tuning in NLP …

R语言APRIORI关联规则、K-MEANS均值聚类分析中药专利复方治疗用药规律网络可视化...

全文链接&#xff1a;http://tecdat.cn/?p30605 应用关联规则、聚类方法等数据挖掘技术分析治疗的中药专利复方组方配伍规律&#xff08;点击文末“阅读原文”获取完整代码数据&#xff09;。 方法检索治疗中药专利复方&#xff0c;排除外用中药及中西药物合用的复方。最近我们…

探讨uniapp的路由与页面生命周期问题

1 首先我们引入页面路由 2 页面生命周期函数 onLoad() {console.log(页面加载)},onShow() {console.log(页面显示)},onReady(){console.log(页面初次显示)},onHide() {console.log(页面隐藏)},onUnload() {console.log(页面卸载)},onBackPress(){console.log(页面返回)}3 页面…

初识linux系统(一)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言 一、linux 发展史 二、Linux操作系统的特点 三、Linux操作系统内核版本 四、常见发行版本 五、 常见开源软件 六、 常见应用场景 七、系统安装 总结 前言 …

2023年天府杯——C 题:码头停靠问题

问题背景&#xff1a; 某个港口有多个不同类型的码头&#xff0c;可以停靠不同种类的船只。每 艘船只需要一定的时间来完成装卸货物等任务&#xff0c;并且每个码头有容量 限制和停靠时间限制。港口需要在保证收益的情况下&#xff0c;尽可能地提高 运营效率和降低成本。同…