时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测

时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测

目录

    • 时序预测 | MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

Matlab实现SSA-XGBoost时间序列预测,麻雀算法优化极限梯度提升树,优化最大迭代次数,深度,学习率;
1.data为数据集,单变量时间序列数据集。
2.MainSSAXGBoostTS.m为主程序文件,其他为函数文件,无需运行;
3.评价指标R2、MAE、MAPE、MSE、MBE;
4.注意程序和数据放在一个文件夹,文件夹不可以XGBoost命名,因为有函数已经用过,运行环境为Matlab2018及以上。

模型描述

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。 算法流程:
Step1: 初始化种群,迭代次数,初始化捕食者和加入者比列。
Step2:计算适应度值,并排序。
Step3:利用式(3)更新捕食者位置。
Step4:利用式(4)更新加入者位置。
Step5:利用式(5)更新警戒者位置。
Step6:计算适应度值并更新麻雀位置。
Step7:是否满足停止条件,满足则退出,输出结果,否则,重复执行Step2-6;
xgboost是属于boosting家族,是GBDT算法的一个工程实现,在模型的训练过程中是聚焦残差,在目标函数中使用了二阶泰勒展开并加入了正则,在决策树的生成过程中采用了精确贪心的思路,寻找最佳分裂点的时候,使用了预排序算法,对所有特征都按照特征的数值进行预排序,然后遍历所有特征上的所有分裂点位,计算按照这些候选分裂点位分裂后的全部样本的目标函数增益,找到最大的那个增益对应的特征和候选分裂点位,从而进行分裂。
这样一层一层的完成建树过程, xgboost训练的时候,是通过加法的方式进行训练,也就是每一次通过聚焦残差训练一棵树出来,最后的预测结果是所有树的加和表示。

本次优化的参数包括最大迭代次数,深度,学习率。

程序设计

  • 完整代码和数据下载:MATLAB实现SSA-XGBoost(麻雀算法优化极限梯度提升树)时间序列预测
P_percent = 0.2;    % The population size of producers accounts for "P_percent" percent of the total population size       %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
end
pFit = fit;                      
pX = x;                            % The individual's best position corresponding to the pFit
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
%
for t = 1 : M    [ ans, sortIndex ] = sort( pFit );% Sort.[fmax,B]=max( pFit );worse= x(B,:);  r2=rand(1);for i = 1 : pNum  %r2小于0.8的发现者的改变(1-20% Equation (3)r1=rand(1);x( sortIndex( i ), : ) = pX( sortIndex( i ), : )*exp(-(i)/(r1*M));%对自变量做一个随机变换x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );%对超过边界的变量进行去除fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );   %就算新的适应度值x( sortIndex( i ), : ) = pX( sortIndex( i ), : )+randn(1)*ones(1,dim);x( sortIndex( i ), : ) = Bounds( x( sortIndex( i ), : ), lb, ub );fit( sortIndex( i ) ) = fobj( x( sortIndex( i ), : ) );endend
%---------------------------------------------------------------------------------------------------------------------------%%%%%%%%%%%%%5%%%%%%这一部位为加入者(追随者)的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%for i = ( pNum + 1 ) : pop     %剩下20-100的个体的变换                % Equation (4)A=floor(rand(1,dim)*2)*2-1;if( i>(pop/2))%这个代表这部分麻雀处于十分饥饿的状态(因为它们的能量很低,也是是适应度值很差),需要到其它地方觅食x( sortIndex(i ), : )=randn(1)*exp((worse-pX( sortIndex( i ), : ))/(i)^2);else%这一部分追随者是围绕最好的发现者周围进行觅食,其间也有可能发生食物的争夺,使其自己变成生产者x( sortIndex( i ), : )=bestXX+(abs(( pX( sortIndex( i ), : )-bestXX)))*(A'*(A*A')^(-1))*ones(1,dim);  end  end%%%%%%%%%%%%%5%%%%%%这一部位为意识到危险(注意这里只是意识到了危险,不代表出现了真正的捕食者)的麻雀的位置更新%%%%%%%%%%%%%%%%%%%%%%%%%c=randperm(numel(sortIndex));%%%%%%%%%这个的作用是在种群中随机产生其位置(也就是这部分的麻雀位置一开始是随机的,意识到危险了要进行位置移动,%处于种群外围的麻雀向安全区域靠拢,处在种群中心的麻雀则随机行走以靠近别的麻雀)
%---------------------------------------------------------------------------------------------------------------------------x( sortIndex( b(j) ), : )=bestX+(randn(1,dim)).*(abs(( pX( sortIndex( b(j) ), : ) -bestX)));else                       %处于种群中心的麻雀的位置改变x( sortIndex( b(j) ), : ) =pX( sortIndex( b(j) ), : )+(2*rand(1)-1)*(abs(pX( sortIndex( b(j) ), : )-worse))/ ( pFit( sortIndex( b(j) ) )-fmax+1e-50);endx( sortIndex(b(j) ), : ) = Bounds( x( sortIndex(b(j) ), : ), lb, ub );fit( sortIndex( b(j) ) ) = fobj( x( sortIndex( b(j) ), : ) );endfor i = 1 : pop if ( fit( i ) < pFit( i ) )pFit( i ) = fit( i );pX( i, : ) = x( i, : );endendendConvergence_curve(t)=fMin;end%---------------------------------------------------------------------------------------------------------------------------
% Application of simple limits/bounds
function s = Bounds( s, Lb, Ub)% Apply the lower bound vector%---------------------------------------------------------------------------------------------------------------------------  % Apply the upper bound vector J = temp > Ub;temp(J) = Ub(J);% Update this new move s = temp;%---------------------------------------------------------------------------------------------------------------------------

参考资料

[1] https://blog.csdn.net/category_11833757.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/article/details/125125787
[3] https://blog.csdn.net/article/details/124928579

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/113269.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot - Google EventBus、AsyncEventBus

介绍 EventBus 顾名思义&#xff0c;事件总线&#xff0c;是一个轻量级的发布/订阅模式的应用模式&#xff0c;最初设计及应用源与 google guava 库。 相比于各种 MQ 中间件更加简洁、轻量&#xff0c;它可以在单体非分布式的小型应用模块内部使用&#xff08;即同一个JVM范围…

利用逻辑回归判断病人肺部是否发生病变

大家好&#xff0c;我是带我去滑雪&#xff01; 判断肺部是否发生病变可以及早发现疾病、指导治疗和监测疾病进展&#xff0c;以及预防和促进肺部健康&#xff0c;定期进行肺部评估和检查对于保护肺健康、预防疾病和提高生活质量至关重要。本期将利用相关医学临床数据结合逻辑回…

嵌入式系统入门实战:探索基本概念和应用领域

嵌入式系统是一种专用的计算机系统,它是为了满足特定任务而设计的。这些系统通常具有较低的硬件资源(如处理器速度、内存容量和存储容量),但具有较高的可靠性和实时性。嵌入式系统广泛应用于各种领域,如家用电器、汽车、工业控制、医疗设备等。 嵌入式系统的基本概念 微控…

力扣2. 两数相加

2. 两数相加 给你两个 非空 的链表&#xff0c;表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的&#xff0c;并且每个节点只能存储 一位 数字。 请你将两个数相加&#xff0c;并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外&#xff0c;这两个…

从《离婚律师》中学习代理模式

〇、前言 在2014年的时候&#xff0c;有一部非常火爆的电视剧叫做《离婚律师》&#xff0c;里面讲述了两名离婚律师池海东和罗郦的爱恨情仇&#xff0c;片子非常好看&#xff0c;当时我自己也怒刷了好几遍。 那么&#xff0c;在本剧的第四集中&#xff0c;有一段非常搞笑的剧情…

docker 04.更加重要的命令

之前的都是基础命令&#xff0c; 前台交互进程和后台守护进程&#xff1a; 重新进入容器&#xff1a; docker中的导入导出&#xff1a; docker中的拷贝到&#xff1a;

AliOS-Things引入

目录 一、简介 1.1 硬件抽象层 1.2 AliOS-Things内核 rhino ​编辑 1.3 AliOS-Things组件 二、如何进行AliOS-Things开发 三、安装环境 安装python pip git 修改pip镜像源 安装aos-cube 一、简介 AliOS-Things是阿里巴巴公司推出的致力于搭建云端一体化LoT软件。AliOS-…

centos升级python3.10,中间遇到问题,终于解决了

升级为python3.10 yum updateyum install openssl-devel bzip2-devel libffi-develyum groupinstall "Development Tools"wget https://www.python.org/ftp/python/3.10.2/Python-3.10.2.tgztar -xzf Python-3.10.2.tgzcd Python-3.10.2./configure --enable-optimi…

Spring Boot Actuator的Env端点存在本地文件包含(LFI)漏洞CVE-2020-5421

文章目录 0.前言1.参考文档2.基础介绍3.漏洞利用原理3.解决方案1. 升级Spring Boot版本2. 限制端点的访问3. 禁用环境端点4. 不公开敏感的Actuator端点5. 开启安全审计 0.前言 背景&#xff1a; Spring Boot Actuator的Env端点存在本地文件包含(LFI)漏洞CVE-2020-5421。被扫描到…

Pytorch学习:神经网络模块torch.nn.Module和torch.nn.Sequential

文章目录 1. torch.nn.Module1.1 add_module&#xff08;name&#xff0c;module&#xff09;1.2 apply(fn)1.3 cpu()1.4 cuda(deviceNone)1.5 train()1.6 eval()1.7 state_dict() 2. torch.nn.Sequential2.1 append 3. torch.nn.functional.conv2d 1. torch.nn.Module 官方文档…

沉浸式VR虚拟实景样板间降低了看房购房的难度

720 全景是一种以全景视角为特点的虚拟现实展示方式&#xff0c;它通过全景图像和虚拟现实技术&#xff0c;将用户带入一个仿佛置身其中的沉浸式体验中。720 全景可以应用于旅游、房地产、展览等多个领域&#xff0c;为用户提供更为直观、真实的体验。 在房地产领域&#xff0c…

node-red - 读写操作redis

node-red - 读写操作redis 一、前期准备二、node-red安装redis节点三、node-red操作使用redis节点3.1 redis-out节点 - 存储数据到redis3.2 redis-cmd节点 - 存储redis数据3.3 redis-in节点 - 查询redis数据 附录附录1&#xff1a;redis -out节点示例代码附录2&#xff1a;redi…

Java eight 解读流(Stream)、文件(File)、IO和异常处理的使用方法

目录 Java 流(Stream)、文件(File)和IO读取控制台输入读写文件FileInputStreamFileOutputStream Java目录 Java 异常处理 Java 流(Stream)、文件(File)和IO java.io 包几乎包含了所有操作输入、输出需要的类。所有这些流类代表了输入源和输出目标。 Java.io 包中的流支持很多种…

matlab-对数据集加噪声并实现tsne可视化

matlab-对数据集加噪声并实现tsne可视化 最近才知道&#xff0c;原来可以不用模型&#xff0c;也能实现对数据集数据的可视化。 **一、**以COIL-100数据集为例子。 问题&#xff1a; 前提&#xff1a;首先对COIL-100数据集根据角度0-175和180-255&#xff0c;分别划分成C1,C…

c++学习之vector的实现

在学习实现vector之前我们会看到对于库中的vector的实现&#xff0c;这里并非使用在学习string那样的定义方式&#xff0c;而是利用迭代器&#xff0c;也就是指针来实现的&#xff0c;这在功能的实现时极大的方便了我们。 那么我们就模仿库这样的方式实现我们呢经常会用到的一些…

PowerBuilder连接SQLITE3

PowerBuilder,一个古老的IDE,打算陆续发些相关的,也许还有人需要,内容可能涉及其他作者,但基本都是基于本人实践整理,如涉及归属,请联系. SQLite,轻型数据库,相对与PowerBuilder来说是个新事务,故发数来,以供参考. PB中使用OLE Microsoft OLE DB方式进行连接,如下 // Profile…

邮件群发的功能特性

自动切换IP登录多账户发送 保证第三方发件邮箱系统发送成功率 由于第三方免费邮箱如同个IP登录多个163账号会造成被屏蔽的问题&#xff0c;我们采用自动拨号vps的方式可全国多个地区自动拨号切换IP,自动保证每个账号同时只登录一个账号发送&#xff0c;更可以多种类型小号混合…

kafka+Kraft模式集群+安全认证

Kraft模式安全认证 前章内容聊到了Kafka的Kraft集群的配置及使用。本篇再来说说kafka的安全认证方面的配置&#xff0c;。 Kafka提供了多种方式来进行安全认证&#xff0c;包括身份认证、授权和加密传输。一些常用的Kafka安全认证方式&#xff1a; SSL/TLS&#xff1a;使用S…

数据库的基本概念

数据库 数据库由表集合组成&#xff0c;它是以一定的组织方式存储的相互有关的数据集合。 表&#xff1a;记录&#xff1a;行&#xff0c;字段&#xff08;属性&#xff09;&#xff1a;列&#xff0c;以行列的形式就组成了表&#xff08;数据存储在表中&#xff09;。 关系数…

学术加油站|基于端到端性能的学习型基数估计器综合测评

编者按 本文系东北大学李俊虎所著&#xff0c;也是「 OceanBase 学术加油站」系列第 11 篇内容。 「李俊虎&#xff1a;东北大学计算机科学与工程学院在读硕士生&#xff0c;课题方向为数据库查询优化&#xff0c;致力于应用 AI 技术改进传统基数估计器&#xff0c;令数据库选…