目录
摘要
简介
解决方案和评估系统简介
应用聚焦:高准确度数据采集器
结论
摘要
本文探讨了为仪器仪表应用设计高准确度设备所涉及的挑战,并介绍了由低INL SAR ADC、全集成式超低温漂精密基准电压源、四通道匹配电阻网络和零漂移低噪声放大器构建的高准确度, 将进一步深入探讨完整的设计解决方案以及测量结果
简介
在对准确度有很高要求的行业里, 七位半或更高分辨率的数字万用表(DMM)会被使用,这些DMM采用由分立元器件搭建的多斜率积分ADC。这些ADC虽然可以提供合理准确度的测量结果,但对于大多数工程师来说,其设计和调试过程往往过于复杂,因此许多工程师会选择商用ADC来简化设计。
在过去的十年里,24位Σ-Δ ADC被广泛应用于六位半DMM设计中。然而,要想实现七位半准确度和线性度,就必须使用更高性能的ADC。此外,基准电压问题也带来了挑战,深埋型齐纳二极管基准电压源需要复杂的外部信号调理电路来实现超低温度漂移。
这些情况也适用于其他各种有高准确度需求的应用,例如三相标准表、现场仪表校准器、高准确度数据采集(DAQ)系统、实验室电子秤、地震物探仪以及自动测试设备(ATE)中的源表(SMU)/功率测量单元(PMU)。
本文将介绍由低INL SAR ADC、全集成式超低温漂精密基准电压源、四通道匹配电阻网络和零漂移低噪声放大器组成的高准确度信号链解决方案。我们会提供若干主要指标的实际测量结果,并讨论几个典型应用供读者参考。
解决方案和评估系统简介
高准确度解决方案的评估系统由两块板组成:一块七位半高准确度信号链板和一块控制板。
- 首先,输入信号经过EMI滤波器进行差模和共模滤波。然后,信号进入AFE信号调理电路,以转换到ADC输入范围内。该AFE电路可确保实现超低温度漂移、超低噪声和准确增益,并能很好地驱动SAR ADC。为保障系统准确度和温度漂移特性,采用ADI公司的恒温控制精密基准电压源 ADR1001来为ADC提供5 V基准电压,并为AFE电路提供2.5 V共模电压。
- 模数转换器选用了ADI最新的兼具低INL和高分辨率的SAR ADC AD4630-24。
- 控制板从ADC收集数据,并将其传输到PC。ADI EVAL-AD4630-24 的ACE软件可用于配置AD4630(采样速率、ADC通道、采集模式)以及分析ADC数据。
应用聚焦:高准确度数据采集器
数据采集器可用于实现多种测量和控制功能。为了在不同幅度和频率下高准确度地测量电压、热电偶和电流,通常使用24位ADC。
硬件设计人员在开发这些数据采集信号链时,通常需要高输入阻抗,以直接连接多种传感器。在这种情况下,通常需要增益可编程使电路适应不同的输入信号幅度——单极性或双极性和单端或差分信号,具有可变共模电压。大多数PGIA(可编程增 益仪表放大器)由单端输出组成,该输出不能直接驱动基于全差分、高准确度SAR ADC架构的信号链,需要至少一个信号调理或驱动级放大器。
图15为PGIA AFE解决方案1:
- 选择ADA4523-1和LT5400/LT5401是因为其温漂指标性能比较出色。
- 选择ADG5234是因为其电容较低。
- 第一级增益为1或5,第二级增益也是1或5。通过切换ADG5234,总增益可以是1、5或25。
- 最后一级由ADA4523-1和LT5401组成,将信号衰减到ADC输入范围内。
- 结合AD4630-24和ADR4550B使用时,该信号链可用于高准确度数据采集器应用。
结论
DMM等精密仪器应用通常使用Σ-Δ ADC。然而,由于INL指标的限制,实现更好的线性度和更高的准确度可能很困难。此外,深埋型齐纳二极管基准电压源的外部信号调理设计过于复杂,对于寻求提升现有产品性能的客户来说是一个瓶颈。
通过利用0.1 ppm INL 2 MSPS SAR AD4630-24、全集成式超低温 ADR1001、低噪声零漂移ADA4523-1和1 ppm/°C LT5400等器件,模拟前端信号链可以实现非常出色的指标性能:0.6 ppm 24小时准确度、0.2 ppm线性度、0.05 ppm噪声和0.6 ppm/°C温漂。这些实际测量结果与本系列文章第一部分中介绍的理论分析和计算基本吻合。因此,该信号链适用于各种高准确度应用,包括DMM、现 场仪表校准器、三相标准电表和高准确度数据采集器等。