keras深度学习框架通过卷积神经网络cnn实现手写数字识别

    昨天通过keras构建简单神经网络实现手写数字识别,结果在最后进行我们自己的手写数字识别的时候,准确率堪忧,只有60%。今天通过卷积神经网络来实现手写数字识别。

    构建卷积神经网络和简单神经网络思路类似,只不过这里加入了卷积、池化等概念,网络结构复杂了一些,但是整体的思路没有变化,加载数据集,数据集修改,搭建网络模型,编译模型,训练模型,保存模型,利用模型预测。

    这里还是给出两个例子,一个是构建网络,最后保存训练好的网络模型,一个是通过加载保存的网络模型预测我们自己的手写数字图片。

import keras
import numpy as np
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, Conv2D, Flatten, MaxPool2D
from tensorflow.keras import datasets, utils
# 数据处理
(x_train, y_train), (x_test, y_test) = datasets.mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.shape[1], 1)
x_train = x_train.astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[1], 1)
x_test = x_test.astype('float32') / 255
y_train = utils.to_categorical(y_train, num_classes=10)
y_test = utils.to_categorical(y_test, num_classes=10)
# 构建模型
model = Sequential()
model.add(Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation="relu", input_shape=(28, 28, 1)))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Conv2D(filters=36, kernel_size=(3, 3), padding='same', activation="relu"))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation="relu"))
model.add(Dropout(0.25))
model.add(Dense(10, activation="softmax"))
# 编译
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.summary()
# 训练
model.fit(x_train, y_train, epochs=5, batch_size=128, validation_data=(x_test, y_test))
# 保存模型
model.save("mnist.h5")

     训练模型,打印信息如下:

Model: "sequential"
_________________________________________________________________Layer (type)                Output Shape              Param #   
=================================================================conv2d (Conv2D)             (None, 28, 28, 16)        160       max_pooling2d (MaxPooling2D  (None, 14, 14, 16)       0         )                                                               conv2d_1 (Conv2D)           (None, 14, 14, 36)        5220      max_pooling2d_1 (MaxPooling  (None, 7, 7, 36)         0         2D)                                                             dropout (Dropout)           (None, 7, 7, 36)          0         flatten (Flatten)           (None, 1764)              0         dense (Dense)               (None, 128)               225920    dropout_1 (Dropout)         (None, 128)               0         dense_1 (Dense)             (None, 10)                1290      =================================================================
Total params: 232,590
Trainable params: 232,590
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
2023-08-28 16:03:54.677314: I tensorflow/stream_executor/cuda/cuda_dnn.cc:368] Loaded cuDNN version 8800
469/469 [==============================] - 10s 17ms/step - loss: 0.2842 - accuracy: 0.9123 - val_loss: 0.0628 - val_accuracy: 0.9798
Epoch 2/5
469/469 [==============================] - 7s 16ms/step - loss: 0.0836 - accuracy: 0.9743 - val_loss: 0.0473 - val_accuracy: 0.9841
Epoch 3/5
469/469 [==============================] - 7s 16ms/step - loss: 0.0627 - accuracy: 0.9801 - val_loss: 0.0325 - val_accuracy: 0.9886
Epoch 4/5
469/469 [==============================] - 7s 15ms/step - loss: 0.0497 - accuracy: 0.9844 - val_loss: 0.0346 - val_accuracy: 0.9882
Epoch 5/5
469/469 [==============================] - 7s 15ms/step - loss: 0.0422 - accuracy: 0.9867 - val_loss: 0.0298 - val_accuracy: 0.9898

    准确率最后,到达了98.5%以上。

    用模型预测

import keras
import numpy as np
import cv2
from keras.models import load_modelmodel = load_model("mnist.h5")def predict(img_path):img = cv2.imread(img_path, 0)img = img.reshape(28, 28).astype("float32") / 255  # 0 1img = img.reshape(1, 28, 28, 1)  # 28 * 28 -> (1,28,28,1)label = model.predict(img)label = np.argmax(label, axis=1)print('{} -> {}'.format(img_path, label[0]))if __name__ == '__main__':for _ in range(10):predict("number_images/b_{}.png".format(_))

    数字图片如下: 

    图片放在项目目录number_images中。

    预测结果打印:

 

    感觉就是不一样,准确率从60%提升到了90%。虽然没有达到100%,但是已经很好了。 

    对比之前的代码,改动很小,主要是网络输入的时候,数据形状发生了改变,简单神经网络需要的是(784,*)结构,卷积神经网络需要的是(1,28,28,1)的结构, 在数据处理上做了调整,另一个不一样的地方就是网络模型在添加的时候,之前就是简单的两层网络,卷积神经网络复杂了很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/114530.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaWeb 速通Ajax

目录 一、Ajax快速入门 1.基本介绍 : 2.使用原理 : 二、Ajax经典入门案例 1.需求 : 2.前端页面实现 : 3. 处理HTTP请求的servlet实现 4.引入jar包及druid配置文件、工具类 : 5.Domain层实现 : 6.DAO层实现 : 7.Service层实现 : 8.运行测试 : 三、JQuery操作Ajax 1 …

Android studio实现圆形进度条

参考博客 效果图 MainActivity import androidx.appcompat.app.AppCompatActivity; import android.graphics.Color; import android.os.Bundle; import android.widget.TextView;import java.util.Timer; import java.util.TimerTask;public class MainActivity extends App…

OpenCV之filter2D函数

函数原型: CV_EXPORTS_W void filter2D(InputArray src,OutputArray dst,int ddepth,InputArray kernel,Point anchorPoint(-1,-1),double delta0,int borderTypeBORDER_DEFAULT); src: 原图像; dst:输出图像 ,和输入的图像具有…

Android RecyclerView 之 吸顶效果

前言 上一篇文章已经实现了列表跟宫格布局的动态切换,这篇文章主要来说通过 CoordinatorLayout 和 AppbarLayout 的配合,以及 NestedScrollView 来实现吸顶效果 。效果如下。 一、CoordinatorLayout 是什么? CoordinatorLayout 是 Androi…

javaee之黑马乐优商城1

问题1:整体的项目架构与技术选型 技术选型 开发环境 域名测试 如何把项目起来,以及每一个目录结构大概是什么样子 通过webpack去启动了有个项目,这里还是热部署,文件改动,内容就会改动 Dev这个命令会生成一个本地循环…

Metasploit“MSF”连接postgresql时因排序规则版本不匹配导致无法连接

一、问题 更新Kali之后使用Metasploit时出现一个问题,连接postgresql时因排序规则版本不匹配导致无法连接 警告: database "msf" has a collation version mismatch DETAIL: The database was created using collation version 2.36, but the operati…

Web_单一视频文件mp4转换为m3u分段ts文件实现边下边播

一、下载ffmpeg: Builds - CODEX FFMPEG @ gyan.dev 二、转换视频文件: 先解压缩,会看到如下结构: 进入bin目录,把需要转换的视频文件复制过来,同时新建一个文件夹用来存放转换后的文件,然后按住Shift键同时单击鼠标右键,选择打开Powershell窗口: 输入以下命令(根据…

干货!耽误你1分钟,教你怎么查自己的流量卡是什么卡?

很多朋友都想购买一张正规的号卡,但是在网上一搜流量卡,五花八门,各式各样,那么,我们该如何辨别流量卡呢。 ​ 从种类上来看,网上的流量卡一共分为两种:号卡和物联卡 物联卡不用多说&#xff0…

无涯教程-Android - Linear Layout函数

Android LinearLayout是一个视图组,该视图组将垂直或水平的所有子级对齐。 Linear Layout - 属性 以下是LinearLayout特有的重要属性- Sr.NoAttribute & 描述1 android:id 这是唯一标识布局的ID。 2 android:baselineAligned 此值必须是布尔值,为…

【OpenCV入门】第三部分——绘制图形与文字

文章结构 线段的绘制矩形的绘制圆形的绘制多边形的绘制文字的绘制文字的斜体效果文字的垂直镜像效果在图像上绘制文字 动态绘制图形 线段的绘制 使用 line() 方法可绘制长短不一的、粗细各异的、五颜六色的线段。 img cv2.line(img,pt1,pt2,color,thickness)img:…

Spring MVC: 请求参数的获取

Spring MVC 前言通过 RequestParam 注解获取请求参数RequestParam用法 通过 ServletAPI 获取请求参数通过实体类对象获取请求参数附 前言 在 Spring MVC 介绍中,谈到前端控制器 DispatcherServlet 接收客户端请求,依据处理器映射 HandlerMapping 配置调…

DT 变形学习

弯曲变形 扩张变形 正弦变形 挤压变形 扭曲变形 波浪变形 内外的影响 雕刻 抖动变形 混合变形 晶格变形 包裹变形 线条变形 重置 在测试一个

嵌入式行业——选择比努力重要

嵌入式开发可以说是一个较大的类别,也可以看作是应用技术的一种广义称谓。它在不同的工业和行业场景中应用不同的业务模式和领域。 举个例子,嵌入式技术结合基站通信技术,就构成了华为基站;嵌入式技术结合视频处理/图像处理技术&a…

docker作业

目录 1、使用mysql:5.6和 owncloud 镜像,构建一个个人网盘。 1.1启动镜像 1.2启动cloud镜像 1.3浏览器访问 ​编辑 2、安装搭建私有仓库 Harbor 2.1下载docker-compose 2.2 磁盘挂载,保存harbor 2.3 修改配置文件 2.4安装 2.5浏览器访问 2.6 新…

因果推断(六)基于微软框架dowhy的因果推断

因果推断(六)基于微软框架dowhy的因果推断 DoWhy 基于因果推断的两大框架构建:「图模型」与「潜在结果模型」。具体来说,其使用基于图的准则与 do-积分来对假设进行建模并识别出非参数化的因果效应;而在估计阶段则主要…

2023年信息安全管理与评估任务书模块一网络平台搭建与设备安全防护

全国职业院校技能大赛 高等职业教育组 信息安全管理与评估 任务书 模块一 网络平台搭建与设备安全防护 比赛时间 本阶段比赛时长为180分钟。 赛项信息 竞赛阶段 任务阶段 竞赛任务 竞赛时间 分值 第一阶段 网络平台搭建与设备安全防护 任务1 网络平台搭建 9:00- 12:00 …

Linux文件管理知识:查找文件(第二篇)

上篇文章详细介绍了linux系统中查找文件的工具或者命令程序locate和find命令的基本操作。那么,今天这篇文章紧接着查找文件相关操作内容介绍。 Find命令所属操作列表中的条目,有助于我们想要的结果输出。上篇文章已讲到find 命令是基于搜索结果来执行操作…

什么是BEM命名规范(Block-Element-Modifier Notation)?它有什么优势?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ BEM命名规范(Block-Element-Modifier Notation)⭐ BEM命名结构⭐ 优势⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎…

Golang数据结构和算法

Golang数据结构和算法 数据的逻辑结构和物理结构常见数据结构及其特点算法的时间复杂度和空间复杂度Golang冒泡排序Golang选择排序Golang插入排序Golang快速排序Golang归并排序Golang二分查找Golang sort包Golang链表Golang container/list标准库Golang栈stackGolang二叉搜索树…

阻塞非阻塞IO(BIO和NIO),IO多路复用

1.概念 NIO(New Input/Output)和BIO(Blocking Input/Output)是Java中用于处理输入输出的两种不同的模型。 BIO 会阻塞,等有了消息,立刻返回,一个线程处理一个recv(需要很多线程&…