PyTorch 模型性能分析和优化 - 第 3 部分

[1]是关于使用 PyTorch Profiler 和 TensorBoard 分析和优化 PyTorch 模型主题的系列文章的第三部分。我们的目的是强调基于 GPU 的训练工作负载的性能分析和优化的好处及其对训练速度和成本的潜在影响。特别是,我们希望向所有机器学习开发人员展示 PyTorch Profiler 和 TensorBoard 等分析工具的可访问性。您无需成为 CUDA 专家即可通过应用我们在帖子中讨论的技术获得有意义的性能提升。

在我们的第一篇文章中,我们演示了如何使用 PyTorch Profiler TensorBoard 插件的不同视图来识别性能问题,并回顾了一些用于加速训练的流行技术。在第二篇文章中,我们展示了如何使用 TensorBoard 插件 Trace View 来识别张量何时从 CPU 复制到 GPU 以及返回。这种数据移动——可能会导致同步点并大大降低训练速度——通常是无意的,有时很容易避免。这篇文章的主题是我们遇到 GPU 和 CPU 之间与张量副本无关的同步点的情况。与张量副本的情况一样,这些可能会导致训练步骤停滞并大大减慢训练的整体时间。我们将演示此类事件的存在、如何使用 PyTorch Profiler 和 PyTorch Profiler TensorBoard 插件 Trace View 来识别它们,以及以最小化此类同步事件的方式构建模型的潜在性能优势。

与我们之前的文章一样,我们将定义一个玩具 PyTorch 模型,然后迭代地分析其性能、识别瓶颈并尝试修复它们。我们将在 Amazon EC2 g5.2xlarge 实例(包含 NVIDIA A10G GPU 和 8 个 vCPU)上运行实验,并使用官方 AWS PyTorch 2.0 Docker 映像。请记住,我们描述的某些行为可能因 PyTorch 版本而异。

玩具示例

在下面的块中,我们介绍了一个玩具 PyTorch 模型,它对 256x256 输入图像执行语义分割,即,它采用 256x256 RGB 图像,并输出来自十个语义类别的“每像素”标签的 256x256 映射。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
import torch.profiler
import torch.utils.data
from torch import Tensor

class Net(nn.Module):
    def __init__(self, num_hidden=10, num_classes=10):
        super().__init__()
        self.conv_in = nn.Conv2d(3103, padding='same')
        hidden = []
        for i in range(num_hidden):
            hidden.append(nn.Conv2d(10103, padding='same'))
            hidden.append(nn.ReLU())

        self.hidden = nn.Sequential(*hidden)
        self.conv_out = nn.Conv2d(10, num_classes, 3, padding='same')

    def forward(self, x):
        x = F.relu(self.conv_in(x))
        x = self.hidden(x)
        x = self.conv_out(x)
        return x

为了训练我们的模型,我们将使用标准交叉熵损失并进行一些修改:

  1. 我们假设目标标签包含一个忽略值,指示我们想要从损失计算中排除的像素。
  2. 我们假设语义标签之一将某些像素识别为属于图像的“背景”。我们定义损失函数来将它们视为忽略标签。
  3. 仅当我们遇到目标张量至少包含两个唯一值的批次时,我们才会更新模型权重。

虽然我们出于演示目的选择了这些修改,但这些类型的操作并不罕见,并且可以在许多“标准”PyTorch 模型中找到。由于我们已经是性能分析方面的“专家”,因此我们已经使用 torch.profiler.record_function 上下文管理器将每个操作包装在损失函数中(如我们的第二篇文章中所述)。

class MaskedLoss(nn.Module):
    def __init__(self, ignore_val=-1, num_classes=10):
        super().__init__()
        self.ignore_val = ignore_val
        self.num_classes = num_classes
        self.loss = torch.nn.CrossEntropyLoss()

    def cross_entropy(self, pred: Tensor, target: Tensor) -> Tensor:

        # create a boolean mask of valid labels
        with torch.profiler.record_function('create mask'):
            mask = target != self.ignore_val

        # permute the logits in preparation for masking
        with torch.profiler.record_function('permute'):
            permuted_pred = torch.permute(pred, [0231])

        # apply the boolean mask to the targets and logits
        with torch.profiler.record_function('mask'):
            masked_target = target[mask]
            masked_pred = permuted_pred[mask.unsqueeze(-1).expand(-1-1-1,
                                                             self.num_classes)]
            masked_pred = masked_pred.reshape(-1, self.num_classes)

        # calculate the cross-entropy loss
        with torch.profiler.record_function('calc loss'):
            loss = self.loss(masked_pred, masked_target)
        return loss

    def ignore_background(self, target: Tensor) -> Tensor:

        # discover all indices where target label is "background"
        with torch.profiler.record_function('non_zero'):
            inds = torch.nonzero(target == self.num_classes - 1, as_tuple=True)

        # reset all "background" labels to the ignore index
        with torch.profiler.record_function('index assignment'):
            target[inds] = self.ignore_val
        return target


    def forward(self, pred: Tensor, target: Tensor) -> Tensor:

        # ignore background labels
        target = self.ignore_background(target)

        # retrieve a list of unique elements in target
        with torch.profiler.record_function('unique'):
            unique = torch.unique(target)

        # check if the number of unique items pass the threshold
        with torch.profiler.record_function('numel'):
            ignore_loss = torch.numel(unique) < 2

        # calculate the cross-entropy loss
        loss = self.cross_entropy(pred, target)

        # zero the loss in the case that the number of unique elements
        # is below the threshold
        if ignore_loss:
            loss = 0. * loss

        return loss

我们的损失函数看起来很简单,对吧?错误的!正如我们将在下面看到的,损失函数包括许多触发主机设备同步事件的操作,这些操作会大大降低训练速度 - 这些操作都不涉及将张量复制到 GPU 中或从 GPU 中复制出来。正如我们在上一篇文章中一样,我们要求您在继续阅读之前尝试找出三个性能优化的机会。

为了演示的目的,我们使用随机生成的图像和每像素标签图,如下定义。

from torch.utils.data import Dataset

# A dataset with random images and label maps
class FakeDataset(Dataset):
    def __init__(self, num_classes=10):
        super().__init__()
        self.num_classes = num_classes
        self.img_size = [256256]

    def __len__(self):
        return 1000000

    def __getitem__(self, index):
        rand_image = torch.randn([3]+self.img_size, dtype=torch.float32)
        rand_label = torch.randint(low=-1, high=self.num_classes, 
                                                 size=self.img_size)
        return rand_image, rand_label

train_set = FakeDataset()
train_loader = torch.utils.data.DataLoader(train_set, batch_size=256
                              shuffle=True, num_workers=8, pin_memory=True)

最后,我们使用根据我们的需求配置的 PyTorch Profiler 定义训练步骤:

device = torch.device("cuda:0")
model = Net().cuda(device)
criterion = MaskedLoss().cuda(device)

optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
model.train()


# training loop wrapped with profiler object
with torch.profiler.profile(
        schedule=torch.profiler.schedule(wait=1, warmup=4, active=3, repeat=1),
        on_trace_ready=torch.profiler.tensorboard_trace_handler('/tmp/prof'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True
as prof:
    for step, data in enumerate(train_loader):
        inputs = data[0].to(device=device, non_blocking=True)
        labels = data[1].to(device=device, non_blocking=True)
        if step >= (1 + 4 + 3) * 1:
            break
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        optimizer.zero_grad(set_to_none=True)
        loss.backward()
        optimizer.step()
        prof.step()

如果您天真地运行这个训练脚本,您可能会看到 GPU 利用率很高(~90%),但不知道它有什么问题。只有通过分析,我们才能识别潜在的性能瓶颈和训练加速的潜在机会。那么,话不多说,让我们看看我们的模型的表现如何。

初始性能结果

在这篇文章中,我们将重点介绍 PyTorch Profiler TensorBoard 插件的跟踪视图。请参阅我们之前的文章,了解有关如何使用该插件支持的其他一些视图的提示。

在下图中,我们显示了玩具模型单个训练步骤的跟踪视图。

alt

我们可以清楚地看到,我们的 1.3 秒长训练步骤完全由损失函数第一行中的 torch.nonzero 运算符主导。所有其他操作都聚集在巨大的 cudaMemcpyAsyn 事件的两侧。到底是怎么回事??!!为何如此看似平淡无奇的行动,却会引起如此大的眼花缭乱呢?

也许我们不应该如此惊讶,因为 torch.nonzero 文档确实包含以下注释:“当输入位于 CUDA 上时,torch.nonzero() 会导致主机设备同步。”与其他常见的 PyTorch 操作相反,torch.nonzero 返回的张量的大小不是预先确定的,因此需要同步。 CPU提前不知道输入张量中有多少个非零元素。它需要等待来自 GPU 的同步事件,以便执行适当的 GPU 内存分配并适当地准备后续的 PyTorch 操作。

请注意,cudaMempyAsync 的长度并不表示 torch.nonzero 操作的复杂性,而是反映了 CPU 需要等待 GPU 完成 CPU 启动的所有先前内核的时间量。例如,如果我们在第一个调用之后立即进行额外的 torch.nonzero 调用,那么我们的第二个 cudaMempyAsync 事件将比第一个事件显着短,因为 CPU 和 GPU 已经或多或少“同步”。 (请记住,这个解释来自非 CUDA 专家,所以请随意理解……)

优化 #1:减少 torch.nonzero 操作的使用

现在我们了解了瓶颈的根源,挑战就变成了寻找执行相同逻辑但不会触发主机设备同步事件的替代操作序列。对于我们的损失函数,我们可以使用 torch.where 运算符轻松完成此操作,如下面的代码块所示:

def ignore_background(self, target: Tensor) -> Tensor:
    with torch.profiler.record_function('update background'):
        target = torch.where(target==self.num_classes-1
                                     -1*torch.ones_like(target),target)
    return target

在下图中,我们显示了此更改后的跟踪视图。

alt

虽然我们成功删除了来自 torch.nonzero 操作的 cudaMempyAsync,但它已立即被来自 torch.unique 操作的 cudaMempyAsync 替换,并且我们的步骤时间没有变化。这里的 PyTorch 文档不太友好,但根据我们之前的经验,我们可以假设,由于我们使用了大小不确定的张量,我们再次遭受主机设备同步事件的困扰。

优化 #2:减少 torch.unique 操作的使用

用等效的替代方案替换 torch.unique 运算符并不总是可行的。然而,在我们的例子中,我们实际上不需要知道唯一标签的值,我们只需要知道唯一标签的数量。这可以通过在展平的目标张量上应用 torch.sort 操作并计算所得步骤函数中的步骤数来计算。

  def forward(self, pred: Tensor, target: Tensor) -> Tensor:

        # ignore background labels
        target = self.ignore_background(target)

        # sort the list of labels
        with torch.profiler.record_function('sort'):
            sorted,_ = torch.sort(target.flatten())
            
        # indentify the steps of the resultant step function
        with torch.profiler.record_function('deriv'):
            deriv = sorted[1:]-sorted[:-1]
        
        # count the number of steps
        with torch.profiler.record_function('count_nonzero'):
            num_unique = torch.count_nonzero(deriv)+1

        # calculate the cross-entropy loss
        loss = self.cross_entropy(pred, target)

        # zero the loss in the case that the number of unique elements
        # is below the threshold
        with torch.profiler.record_function('where'):
            loss = torch.where(num_unique<20.*loss, loss)

        return loss

在下图中,我们捕获了第二次优化后的跟踪视图:

alt

我们再次解决了一个瓶颈,但又面临一个新的瓶颈,这次来自布尔掩码例程。

布尔掩码是我们常用的例程,用于减少所需的机器操作总数。在我们的例子中,我们的目的是通过删除“忽略”像素并将交叉熵计算限制为感兴趣的像素来减少计算量。显然,这适得其反。和以前一样,应用布尔掩码会导致大小不确定的张量,并且它触发的 cudaMempyAsync 大大掩盖了排除“忽略”像素所节省的任何费用。

优化 #3:注意布尔掩码操作

在我们的例子中,解决这个问题相当简单,因为 PyTorch CrossEntropyLoss 有一个用于设置ignore_index的内置选项。

class MaskedLoss(nn.Module):
    def __init__(self, ignore_val=-1, num_classes=10):
        super().__init__()
        self.ignore_val = ignore_val
        self.num_classes = num_classes
        self.loss = torch.nn.CrossEntropyLoss(ignore_index=-1)

    def cross_entropy(self, pred: Tensor, target: Tensor) -> Tensor:
         with torch.profiler.record_function('calc loss'):
            loss = self.loss(pred, target)
        return loss

在下图中,我们显示了生成的跟踪视图:

alt

天啊!!我们的步数时间已一路下降至 5.4 毫秒。这比我们开始时快了 240 (!!) 倍。通过简单地改变一些函数调用并且不对损失函数逻辑进行任何修改,我们能够显着优化训练步骤的性能。

重要提示:在我们选择的玩具示例中,我们为减少 cudaMempyAsync 事件数量而采取的步骤对训练步骤时间有明显影响。然而,在某些情况下,相同类型的更改可能会损害而不是提高性能。例如,在布尔掩码的情况下,如果我们的掩码非常稀疏并且原始张量非常大,那么应用掩码所节省的计算量可能会超过主机设备同步的成本。重要的是,应根据具体情况评估每次优化的影响。

总结

在这篇文章中,我们重点关注由主机设备同步事件引起的训练应用程序中的性能问题。我们看到了触发此类事件的 PyTorch 运算符的几个示例 - 所有这些运算符的共同属性是它们输出的张量的大小取决于输入。您可能还会遇到来自其他操作员的同步事件,本文未介绍。我们演示了如何使用 PyTorch Profiler 等性能分析器及其关联的 TensorBoard 插件来识别此类事件。

在我们的玩具示例中,我们能够找到有问题的运算符的等效替代方案,这些运算符使用固定大小的张量并避免需要同步事件。这些导致训练时间显着缩短。然而,在实践中,您可能会发现解决此类瓶颈要困难得多,甚至是不可能的。有时,克服它们可能需要重新设计模型的某些部分。

Reference

[1]

Source: https://towardsdatascience.com/pytorch-model-performance-analysis-and-optimization-part-3-1c5876d78fe2

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/116180.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP8的数组-PHP8知识详解

今天开始学习数组&#xff0c; 本文主要讲了三点&#xff1a;什么是数组、php8中数组的改进、数组函数。 一、什么是数组 在PHP8中&#xff0c;数组是非常重要的数据类型。相对于其他的数据类型&#xff0c;数组更像一种结构&#xff0c;而这种结构可以储存一系列数值。 数组…

设计模式之桥接模式

文章目录 手机操作问题传统方案解决手机操作问题传统方案解决手机操作问题分析桥接模式(Bridge)-基本介绍桥接模式(Bridge)-原理类图桥接模式解决手机操作问题桥接模式的注意事项和细节桥接模式其它应用场景常见的应用场景: 手机操作问题 现在对不同手机类型的不同品牌实现操作…

国标视频融合云平台EasyCVR视频汇聚平台关于远程控制的详细介绍

EasyCVR国标视频融合云平台是一个能在复杂网络环境下统一汇聚、整合和集中管理各类分散视频资源的平台。该平台提供了多种视频能力和服务&#xff0c;包括视频监控直播、云端录像、云存储、录像检索与回看、智能告警、平台级联、集群、电子地图、H.265视频自动转码和智能分析等…

安圭拉变成AI领域的数字金矿?

这个小小的岛国今年的域名销售额可能达到其GDP的10%&#xff01; 安圭拉a小小的英国岛屿领土在加勒比海地区&#xff0c;由于其“可再生能源”&#xff0c;今年可能带来高达3000万美元的收入。ai”域名&#xff0c;报告彭博在周四发表的一篇文章中说。在过去的一年里&#xff0…

手写Mybatis:第6章-数据源池化技术实现

文章目录 一、目标&#xff1a;数据源池化技术实现二、设计&#xff1a;数据源池化技术实现三、实现:数据源池化技术实现3.1 工程结构3.2 数据源池化技术关系图3.3 无池化链接实现3.4 有池化链接实现3.4.1 有连接的数据源3.4.2 池化链接的代理3.4.3 池状态定义3.4.4 pushConnec…

Linux系统下建立Socket聊天服务器

目录 1.服务器结构 2.各模块函数 2.1 socket函数 2.2 bind函数 2.3 Listen函数 2.4 accept函数 2.5 接收发送函数 2.6 close函数 2.7 connect函数 3 代码段 3.1 服务器代码 1.服务器结构 使用socket的API函数编写服务端和客户端程序的步骤图示: 2.各模块函数 服务…

Lliux管理员一些小技巧

1、查看bash日志 history命令显示日期和时间 2、打印时候对行列转换 xargs命令是改变已存在的文件的输出格式。“cat 文件名”是根据文件的行分隔符输出显示在屏幕上。如想改变一下&#xff0c;想把所有行合并为一行&#xff0c;就可以使用管道及xargs命令。 cat 文件名 |…

【原创】H3C三层交换机VLAN路由

网络拓扑图 VLAN 配置 VLAN 100 VLAN 200 [H3C]int vlan 100 ip address 1.1.1.1 255.255.255.0[H3C-Vlan-interface100]int vlan 200 ip address 2.2.2.1 255.255.255.0[H3C]int GigabitEthernet 1/0/1port access vlan 100[H3C]int GigabitEthernet 1/0/2port access vlan 2…

sql:SQL优化知识点记录(六)

&#xff08;1&#xff09;索引优化1 查看一下有没有建立索引&#xff1a; 用到索引中的一个&#xff1a;type中的ref决定访问性能 用到索引中的两个&#xff1a;通过key_len的长度可以看出来&#xff0c;比第一个大一点。或者通过ref&#xff1a;中用到了两个常量const 用到了…

黑马 大事件项目 笔记

学习视频&#xff1a;黑马 Vue23 课程 后台数据管理系统 - 项目架构设计 在线演示&#xff1a;https://fe-bigevent-web.itheima.net/login 接口文档: https://apifox.com/apidoc/shared-26c67aee-0233-4d23-aab7-08448fdf95ff/api-93850835 接口根路径&#xff1a; http:/…

Spring 系统架构

Spring总共大约有 20个模块&#xff0c;由1300多个不同的文件构成。而这些组件被分别整合在核心容器&#xff08;CoreContainer&#xff09;、AOP&#xff08;Aspect Oriented Programming&#xff09;和设备支持&#xff08;Instrmentation&#xff09;、数据访问及集成&#…

pyqt5 QuickStart

在使用pyqt5之前&#xff0c;建议下载一个Anaconda环境&#xff0c;这样下载python包更方便&#xff0c;本篇文章是建立在已经安装好Anaconda的情况下使用的。IDE就是标准的PyCharm了。 一、pyqt包的安装 python终端执行下面两个安装命令&#xff1a; pip install PyQt5 pip …

Matlab(数值微积分)

目录 1.多项式微分与积分 1.1 微分 1.2 多项式微分 1.3 如何正确的使用Matlab? 1.3.1 Matlab表达多项式 1.3.2 polyval() 多项式求值 1.3.3 polyder()多项式微分 1.4 多项式积分 1.4.1 如何正确表达 1.4.2 polyint() 多项式积分 2.数值的微分与积分 2.1 数值微分 2…

论文阅读_扩散模型_SDXL

英文名称: SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis 中文名称: SDXL&#xff1a;改进潜在扩散模型的高分辨率图像合成 论文地址: http://arxiv.org/abs/2307.01952 代码: https://github.com/Stability-AI/generative-models 时间: 2023-…

5G NR:RACH流程 -- Msg1之选择正确的PRACH时频资源

PRACH的时域资源是如何确定的 PRACH的时域资源主要由参数“prach-ConfigurationIndex”决定。拿着这个参数的取值去协议38211查表6.3.3.2-2/3/4&#xff0c;需要注意根据实际情况在这三张表中进行选择&#xff1a; FR1 FDD/SULFR1 TDDFR2 TDD Random access preambles can onl…

4.2 实现基于栈的表达式求值计算器(难度4/10)

本作业主要考察&#xff1a;解释器模式的实现思想/栈结构在表达式求值方面的绝对优势 C数据结构与算法夯实基础作业列表 通过栈的应用&#xff0c;理解特定领域设计的关键作用&#xff0c;给大家眼前一亮的感觉。深刻理解计算机语言和人类语言完美结合的杰作。是作业中的上等…

VSCode之C++ CUDA极简环境配置

背景 想要了解CUDA并行计算原理&#xff0c;同时针对深度学习中出现一些“不支持算子”可能需要手写的需要&#xff0c;配置一个简单的CUDA编译环境&#xff0c;探索CUDA编程的范式【注&#xff1a;CUDA环境配置略】。结果展示 示例代码 #include "cuda_runtime.h" …

Redis发布订阅

Redis发布订阅 Redis 发布订阅(pub/sub)是一种 消息通信模式&#xff1a;发送者(pub)发送消息&#xff0c;订阅者(sub)接收消息。 Redis 客户端可以订阅任意数量的频道。 订阅/发布消息图&#xff1a; 下图展示了频道 channel1 &#xff0c; 以及订阅这个频道的三个客户端 —…

Python钢筋混凝土结构计算.pdf-混凝土强度设计值

计算原理&#xff1a; 需要注意的是&#xff0c;根据不同的规范和设计要求&#xff0c;上述公式可能会有所差异。因此&#xff0c;在进行混凝土强度设计值的计算时&#xff0c;请参考相应的规范和设计手册&#xff0c;以确保计算结果的准确性和合规性。 代码实现&#xff1a; …

SAP_ABAP_OLE_EXCEL批导案例

SAP ABAP顾问能力模型梳理_企业数字化建设者的博客-CSDN博客SAP Abap顾问能力模型https://blog.csdn.net/java_zhong1990/article/details/132469977 一、OLE_EXCEL批导 1.1 下载按钮 1.2 选择EXCEL上传&#xff0c;解析EXCLE数据&#xff0c; Call屏幕。 1.3 实现效果 1.4…