【OpenCV入门】第七部分——图像的几何变换

文章结构

  • 缩放
    • dsize参数实现缩放
    • fx参数和fy参数实现缩放
  • 翻转
  • 仿射变换
    • 平移
    • 旋转
    • 倾斜
  • 透视
  • cmath模块

缩放

通过resize()方法可以随意更改图像的大小比例:

dst = cv2.resize(src, dsize, fx, fy, interpolation)
  • src: 原始图像
  • dsize: 输出图像的大小,格式为(宽,高),单位为像素
  • fx: (可选)水平方向的缩放比例
  • fy: (可选)竖直方向的缩放比例
  • interpolation: (可选)缩放的插值方式,在图像缩小或放大时需要删减或补充像素,该参数可以指定使用哪种算法对像素进行增减,建议使用默认值
  • dst: 缩放之后的图像

resize()方法有两种使用方式,一种时通过dsize参数实现缩放,另一种时通过fx和fy参数实现缩放。

dsize参数实现缩放

dsize参数的格式是一个元组,例如(100,200),表示将图像按照宽100像素、高200像素的大小进行缩放。如果使用dsize参数,就可以不写fx和fy参数。

实例1: 将图像按照指定宽高进行缩放

import cv2img = cv2.imread("3.png")  # 读取图像
dst1 = cv2.resize(img, (100, 100))  # 按照宽100像素、高100像素的大小进行缩放
dst2 = cv2.resize(img, (400, 400))  # 按照宽400像素、高400像素的大小进行缩放
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示缩放图像
cv2.imshow("dst2", dst2)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

fx参数和fy参数实现缩放

使用fx参数和fy参数控制缩放时,dsize参数值必须使用None,否则fx和fy会失效。fx参数和fy参数可以使用浮点值,小于1的值表示缩小,大于1的值表示放大。其计算公式为:

  • 新图像宽度 = round( fx × 原图像宽度)
  • 新图像高度 = round( fy × 原图像高度)

实例2: 将图像按照指定比例进行缩放

import cv2img = cv2.imread("3.png")  # 读取图像
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=1.5, fy=1.5)  # 将宽高扩大1.5倍
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst3", dst3)  # 显示缩放图像
cv2.imshow("dst4", dst4)  # 显示缩放图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

翻转

水平方向被称为X轴,垂直方向被称为Y轴。图像沿着X轴或者Y轴反转之后,可以呈现出镜面倒影的效果。

dst = cv2.flip(src, flipCode)
  • src: 原始图像
  • flipCode: 翻转类型
  • dst: 翻转之后的图像

flipCode参数值及含义:

参数值含义
0沿着X轴翻转
正数沿着Y轴翻转
负数同时沿着X轴、Y轴翻转

实例3: 同时实现三种翻转效果

import cv2img = cv2.imread("3.png")  # 读取图像
dst1 = cv2.flip(img, 0)  # 沿X轴翻转
dst2 = cv2.flip(img, 1)  # 沿Y轴翻转
dst3 = cv2.flip(img, -1)  # 同时沿X轴、Y轴翻转
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示翻转之后的图像
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

仿射变换

仿射变换是一种仅在二维平面中发生的几何变形,变换之后的图像仍然可以保持直线的“平直性”和“平行性”,包含平移、旋转和倾斜。

在这里插入图片描述

dst = cv2.warpAffine(src, M, dsize, flags, borderMode, borderValue)
  • src: 原始图像。
  • M: 一个2行3列的矩阵,根据此矩阵的值变换原图中的像素位置。
  • dsize: 输出图像的尺寸大小。
  • flags: 可选参数,插值方式,建议使用默认值。
  • borderMode: (可选)边界类型,建议使用默认值。
  • borderValue: (可选)边界值,默认为0,建议使用默认值返回值说明:
  • dst: 经过仿射变换后输出图像

M也被叫作仿射矩阵,实际上就是一个2x3的列表,其格式如下所示:

M = [[a, b, c], [d, e, f]]

图像做何种仿射变换,完全取决于 M 的值,仿射变换输出的图像会按照以下公式进行计算:

  • 新x = 原x × a + 原y × b + c
  • 新y = 原x × d + 原y × e + f

M矩阵中的数字采用32位浮点格式。可以采用两种方式创建M。

  • 创建一个全是0的M
import numpy as np
M = np.zeros((2,3), np.float32)
  • 创建M的同时赋予具体值
import numpy as np
M = np.float32([[1, 2 ,3], [4, 5, 6]])

通过设定M的值就可以实现多种仿射效果

平移

平移就是让图像中所有的像素同时沿着水平或垂直方向移动。实现这种效果只需要将M的值按照以下格式进行设置:

M = [[1, 0, 水平移动的距离],[0, 1, 垂直移动的距离]]

原始图像的像素就会按照以下公式进行变换:

  • 新x = 原x × 1 + 原y × 0 + 水平移动的距离
  • 新y = 原x × 0 + 原y × 1 + 垂直移动的距离

实例4: 让图像向右下方平移

import cv2
import numpy as npimg = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
M = np.float32([[1, 0, 50],  # 横坐标向右移动50像素[0, 1, 100]])  # 纵坐标向下移动100像素
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

旋转

让图像旋转也是通过M矩阵实现的,但得出这个矩阵需要做很复杂的计算,于是OpenCV提供了getRotationMatrix2D()方法来自动计算出旋转图像的M矩阵。

M = cv2.getRotationMatrix2D(center, angle, scale)
  • center: 旋转的中心点坐标
  • angle: 旋转的角度(不是弧度),正数表示逆时针旋转,负数表示顺时针旋转
  • scale: 缩放比例,浮点类型,如果取值1,表示图像保持原来的比例
  • M: 方法计算出的仿射矩阵

实例5: 让图像逆时针旋转

import cv2img = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
center = (rows/2, cols/2)  # 图像的中心点
# 以图像为中心,逆时针旋转30度,缩放0.8倍
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

倾斜

OpenCV需要定位图像的三个点来计算倾斜效果,三个点的位置如下图所示:
在这里插入图片描述
OpenCV会根据这三个点的位置变化来计算其他像素的位置变化。因为要保证图像的“平直性”和“平行性”,所以不需要“右下角”的点做第四个参数,右下角这个点的位置会根据 A、B、C 三点的变化自动计算得出。

让图像倾斜也是需要通过M矩阵实现的,但得出这个矩阵需要做很复杂的运算,于是 OpenCV提供了getAffineTransform()方法来自动计算出倾斜图像的M矩阵。

M = cv2.getAffineTransform(src, dst)
  • src: 原图三个点坐标,格式为 3行2列的 32 位浮点数列表,例如: [[0,1] [1,0],[1,1]]
  • dst: 倾斜图像的三个点坐标,格式与 src 一样。
  • M: 方法计算出的仿射矩阵

实例6: 让图像向右倾斜

import cv2
import numpy as npimg = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,原图三个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p2 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,倾斜图三个点
p2[0] = [50, 0]  # 左上角点坐标,向右挪50像素
p2[1] = [cols - 1, 0]  # 右上角点坐标,位置不变
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
M = cv2.getAffineTransform(p1, p2)  # 根据三个点的变化轨迹计算出M矩阵
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述
想让图像向左倾斜,不能通过移动A点来实现,需要通过移动B点和C点来实现:

p1 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,原图三个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p2 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,倾斜图三个点
p2[0] = [0, 0]  # 左上角点坐标,位置不变
p2[1] = [cols - 1 - 50, 0]  # 右上角点坐标,向左移动50像素
p2[2] = [50, rows - 1]  # 左下角点坐标,向右移动50像素

透视

如果说仿射是让图像在二维平面中变形,那么透视就是让图像在三维空间中变形。从不同的角度观察物体,会看到不同的变形画面,例如矩形会变成不规则的四边形、直角会变成锐角或钝角、圆形会变成椭圆等。这种变形之后的画面就是透视图。

如图 8.24 所示从图像的底部去观察图 8.25 的话,图像底部距离眼睛较近,所以宽度不变。但图像顶部距离眼睛较远,宽度就会等比缩小,于是观察者就会看到如图 8.26 所示的透视效果。

在这里插入图片描述
OpenCV中需要通过定位图像的四个点来计算透视效果,四个点的位置如下图所示。OpenCV会根据这四个点的位置变化计算出其他像素的位置变化。透视效果不能保证图像的“平直性”和“平行性”。

在这里插入图片描述

dst = cv2.warpPerspective(src, M, dsize, flags, borderMode, borderValue)
  • src: 原始图像
  • M: 一个3 行 3 列的矩阵,根据此矩阵的值变换原图中的像素位置
  • dsize: 输出图像的尺寸大小。
  • flags: (可选)插值方式,建议使用默认值。
  • borderMode: (可选)边界类型,建议使用默认值。
  • borderValue: (可选)边界值,默认为 0,建议使用默认值
  • dst: 经过透视变换后输出图像。

warpPerspective() 方法也需要通过 M矩阵来计算透视效果,但得出这个矩阵需要做很复杂的运算,于是OpenCV 提供了getPerspectiveTransform() 方法来自动计算M矩阵。

M = cv2.getPerspectiveTransform(src, dst)
  • src: 原图四个点坐标,格式为4行2列的32位浮点数列表,例如[[0,0],[0,1],[1,0][1,1]]
  • dst: 透视图的四个点坐标,格式与 src一样
  • M: 方法计算出的仿射矩阵

实例7: 模拟从底部观察图像得到的透视效果

import cv2
import numpy as npimg = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存原图四个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p1[3] = [cols - 1, rows - 1]  # 右下角点坐标
p2 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存透视图四个点
p2[0] = [90, 0]  # 左上角点坐标,向右移动90像素
p2[1] = [cols - 90, 0]  # 右上角点坐标,向左移动90像素
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
p2[3] = [cols - 1, rows - 1]  # 右下角点坐标,位置不变
M = cv2.getPerspectiveTransform(p1, p2)  # 根据四个点的变化轨迹计算出M矩阵
dst = cv2.warpPerspective(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:
在这里插入图片描述

** 实例8:** 生成图书封面俯视图

import cv2
import numpy as npw, h = 320, 480 # 俯视图的宽高
img = cv2.imread("book.jpg") # 读取原图
tmp = cv2.GaussianBlur(img, (5, 5), 0) # 高斯滤波
tmp = cv2.Canny(tmp, 50, 120) # 变为二值边缘图像
# 闭运算,保证边缘闭合
tmp = cv2.morphologyEx(tmp, cv2.MORPH_CLOSE, (15, 15), iterations=2)
# 检测轮廓
contours, _ = cv2.findContours(tmp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours: # 遍历所有轮廓area = cv2.contourArea(c) # 计算轮廓面积if area > 10000: # 只处理面积廓大于10000的轮廓length = cv2.arcLength(c, True) # 获取轮廓周长approx = cv2.approxPolyDP(c, 0.02 * length, True) # 计算出轮廓的端点pts1 = np.float32(approx) # 轮廓四个端点的坐标pts2 = np.float32([[w, 0], [0, 0], [0, h], [w, h]]) # 正面图对应的四个端点坐标M = cv2.getPerspectiveTransform(pts1, pts2) # 创建透视图M矩阵tmp = cv2.warpPerspective(img, M, (w, h)) # 根据M矩阵做透视变换
cv2.imshow("img", img) # 展示原图
cv2.imshow("Top view", tmp) # 展示俯视图
cv2.waitKey() # 按下任何按键后
cv2.destroyAllWindows() # 释放所有窗体

结果如下:

在这里插入图片描述

cmath模块

除了前述 OpenCV 提供的用于对图像进行几何变换的方法外,借助 Python 中的 cmath模块也能让图像呈现特定的视觉效果。例如让图像呈现波浪效果等。

通过 Python 中的 cmath 模块就能够让图像呈现波浪效果。cmath 模块提供了数学函数在复数域上扩展的运算函数,这些函数允许复数、整数、浮点数等数据类型的数据输入,因此这些函数的返回值也都是复数。要特别注意的是,组成复数的实部和虚部都是浮点数。

这里要用到的是 cmath 模块中用于返回指定弧度的正弦值的 sin()方法

cmath.sin(x)
  • x: 与指定角度对应的弧度

在 cmath 模块中的 sin()方法中,还可以设置与正弦函数对应的正弦图像的振幅和波长。例如把一幅图像的列像素 col 作为弧度,设置与正弦函数对应的正弦图像的振幅为 20、波长为30的关键代码如下所示:

20 * cmath.sin(col/15) # 15是一半的波长

实例9: 呈现波浪效果的图像

import cv2
import numpy as np
import cmathimg = cv2.imread("rice.jpg") # 读取当前项目目录下的图像
shape = img.shape # 获取图像的行像素、列像素和通道数
rows = shape[0] # 获取图像的行像素
columns = shape[1] # 获取图像的列像素
channel = shape[2] # 获取图像的通道数
# 创建了一个行像素与图像的行像素相同,列像素与图像的列像素相同,具有3个通道的画布
canvas = np.zeros([rows, columns, channel], np.uint8)
for row in range(rows): # 遍历图像的行像素for col in range(columns): # 遍历图像的列像素# 20是波的振幅,15是一半的波长# 根据正弦函数计算每个像素点的横坐标移动后的位置i = row + 20 * cmath.sin(col/15)i = round(np.real(i))  # 将复数结果转为实数,并四舍五入if 0 <= i < rows:  # 如果移动后的像素点仍在画布范围内canvas[i, col] = img[row, col] # 将原图像的像素点存放到与画布对应的像素点上
cv2.imshow("wave", canvas) # 在一个名为“wave”的窗口中显示呈现波浪效果的图像
cv2.waitKey() # 通过按下键盘上的按键
cv2.destroyAllWindows() # 销毁正在显示的窗口

结果如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117100.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

链表OJ练习(2)

一、分割链表 题目介绍&#xff1a; 思路&#xff1a;创建两个链表&#xff0c;ghead尾插大于x的节点&#xff0c;lhead尾插小于x的节点。先遍历链表。最后将ghead尾插到lhead后面&#xff0c;将大小链表链接。 我们需要在创建两个链表指针&#xff0c;指向两个链表的头节点&…

深入了解Docker镜像操作

Docker是一种流行的容器化平台&#xff0c;它允许开发者将应用程序及其依赖项打包成容器&#xff0c;以便在不同环境中轻松部署和运行。在Docker中&#xff0c;镜像是构建容器的基础&#xff0c;有些家人们可能在服务器上对docker镜像的操作命令不是很熟悉&#xff0c;本文将深…

Android安卓实战项目(13)---记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用!!!(源码在文末)

Android安卓实战项目&#xff08;13&#xff09;—记账APP详细记录每天的收入和支出并且分类统计【生活助手类APP】强烈推荐自己也在用&#xff01;&#xff01;&#xff01;&#xff08;源码在文末&#x1f415;&#x1f415;&#x1f415;&#xff09; 一.项目运行介绍 B站…

如何确认linux的包管理器是yum还是apt,确认之后安装其他程序的时候就需要注意安装命令

打开终端 输入apt&#xff0c;下图中提示未找到命令&#xff0c;则基本上包管理工具就是用yum的 输入yum&#xff0c;我们看到有打印信息&#xff0c;则说明包管理工具是yum的&#xff0c;离线安装命令使用rpm

MongoDB - 安装

一、Docker安装MongoDB 1. 安装 安装版本: 7.0.0 docker run -itd --name mongodb -v C:\\data\\mongodb\\data:/data/db -p 27017:27017 mongo:7.0.0 --auth-v: 将容器目录/data/db映射到本地C:\\data\\mongodb\\data目录&#xff0c;防止容器删除数据丢失-p: 端口映射--aut…

设计模式-4--原型模式(Prototype Pattern)

一、什么是原型模式 原型模式&#xff08;Prototype Pattern&#xff09;是一种创建型设计模式&#xff0c;它的主要目的是通过复制现有对象来创建新的对象&#xff0c;而无需显式地使用构造函数或工厂方法。这种模式允许我们创建一个可定制的原型对象&#xff0c;然后通过复制…

html5——前端笔记

html 一、html51.1、理解html结构1.2、h1 - h6 (标题标签)1.3、p (段落和换行标签)1.4、br 换行标签1.5、文本格式化1.6、div 和 span 标签1.7、img 图像标签1.8、a 超链接标签1.9、table表格标签1.9.1、表格标签1.9.2、表格结构标签1.9.3、合并单元格 1.10、列表1.10.1、ul无序…

六、vim编辑器的使用

1、编辑器 (1)编辑器就是一款软件。 (2)作用就是用来编辑文件&#xff0c;譬如编辑文字、编写代码。 (3)Windows中常用的编辑器&#xff0c;有自带的有记事本(notepad)&#xff0c;比较好用的notepad、VSCode等。 (4)Linux中常用的编辑器&#xff0c;自带的最古老的vi&…

栈和队列篇

目录 一、栈 1.栈的概念及结构 1.1栈的概念 1.2栈的结构示意图 2.栈的实现 2.1支持动态增长的栈的结构 2.2压栈&#xff08;入栈&#xff09; 2.3出栈 2.4支持动态增长的栈的代码实现 二、队列 1.队列的概念及结构 1.1队列的概念 1.2队列的结构示意图 2.队列的实…

安防监控/视频存储/视频汇聚平台EasyCVR接入海康Ehome车载设备出现收流超时的原因排查

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。视频汇聚平台既具…

uni-app之android项目云打包

1&#xff0c;项目根目录&#xff0c;找到mainfest.json&#xff0c;如果appid是空的&#xff0c;需要生成一个appid 2&#xff0c;点击重新获取appid&#xff0c;这个时候需要登录&#xff0c;那就输入账号密码登录下 3&#xff0c;登陆后可以看到获取appid成功 4&#xff0c;…

四轴飞行器的电池研究(MatlabSimulink仿真)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【力扣每日一题】2023.8.31 一个图中连通三元组的最小度数

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个无向图&#xff0c;要我们找出三个节点&#xff0c;这三个节点他们两两相连&#xff0c;这三个节点除了连接到对方的其他线…

Windows下Redis的安装

文章目录 一,Redis介绍二,Redis下载三,Redis安装-解压四,Redis配置五,Redis启动和关闭(通过terminal操作)六,Redis连接七,Redis使用 一,Redis介绍 远程字典服务,一个开源的,键值对形式的在线服务框架,值支持多数据结构,本文介绍windows下Redis的安装,配置相关,官网默认下载的是…

QT day1

作业&#xff1a; 编写一个类似图片的 #include "burger.h"burger::burger(QWidget *parent): QWidget(parent) {//设置初始尺寸this->resize(400,320);//设置尺寸最大值最小值this->setMaximumSize(400,320);this->setMinimumSize(400,320);//设置窗口标…

中国行政区域带坐标经纬度sql文件及地点获取经纬度方法

文章目录 前言一、如何获取某地的经纬度&#xff1f;1.1 搜索百度地图1.2 在下方找到地图开放平台1.3 下滑找到坐标拾取器1.4 使用 二、sql文件2.1 创建表2.2 插入数据 前言 当工作业务上需要涉及地图&#xff0c;给前端返回经纬度等场景&#xff0c;需要掌握区域经纬度的获取…

在iPhone 15发布之前,iPhone在智能手机出货量上占据主导地位,这对安卓来说是个坏消息

可以说这是一记重拳&#xff0c;但似乎没有一个有价值的竞争者能与苹果今年迄今为止的智能手机出货量相媲美。 事实上&#xff0c;根据Omdia智能手机型号市场跟踪机构收集的数据&#xff0c;苹果的iPhone占据了前四名。位居榜首的是iPhone 14 Pro Max&#xff0c;2023年上半年…

C# Linq源码分析之Take(四)

概要 本文主要对Take的优化方法进行源码分析&#xff0c;分析Take在配合Select&#xff0c;Where等常用的Linq扩展方法使用时候&#xff0c;如何实现优化处理。 本文涉及到Select, Where和Take和三个方法的源码分析&#xff0c;其中Select, Where, Take更详尽的源码分析&…

iOS开发Swift-3-UI与按钮Button-摇骰子App

1.创建新项目Dice 2.图标 删去AppIcon&#xff0c;将解压后的AppIcon.appiconset文件拖入Assets包。 3.将素材点数1-6通过网页制作成2x&#xff0c;3x版本并拖入Asset。 4.设置对应的UI。 5.拖入Button组件并设置style。 6.Ctrl加拖拽将Button拖拽到ViewController里&#xff0…

WPF实战项目十三(API篇):备忘录功能api接口、优化待办事项api接口

1、新建MenoDto.cs /// <summary>/// 备忘录传输实体/// </summary>public class MemoDto : BaseDto{private string title;/// <summary>/// 标题/// </summary>public string Title{get { return title; }set { title value; OnPropertyChanged();…