【C++】学习STL中的stack和queue

❤️前言

        今天这篇博客的内容主要关于STL中的stack、queue和priority_queue三种容器。

正文

        stack和queue的使用方式非常简单,我们只要根据之前学习数据结构的经验和文档介绍就可以轻松上手。于是我们直接开始对它们的模拟实现。

stack和queue的模拟实现

        stack和queue我们在数据结构阶段就曾经学习过,它们的底层结构都可以基于其他的基本数据结构进行实现。这时候我们就可以用到上篇文章中提到过的适配器模式来实现这两个模板。

        实现方式只要遵从栈和队列的规则即可,代码如下:

template<typename T, typename Container = deque<T>>
class stack
{
public:bool empty() const{return _con.size() == 0;}size_t size() const{return _con.size();}T& top(){return *(--_con.end());}const T& top() const{return *(--_con.end());}void push(const T& x){_con.insert(_con.end(), x);}void pop(){_con.erase(--_con.end());}private:Container _con;
};template<typename T, typename Container = deque<T>>
class queue
{
public:void push(const T& x){_con.insert(_con.end(), x);}void pop(){_con.erase(_con.begin());}T& back(){return *(--_con.end());}const T& back() const{return *(--_con.end());}T& front(){return *(_con.begin());}const T& front() const{return *(_con.begin());}size_t size() const{return _con.size();}bool empty() const{return _con.size() == 0;}
private:Container _con;
};

        这里我们在使用这两个模板的时候可以传入两个模板参数,分别为数据类型和空间适配器类型,对于stack这样的容器,我们可以传入vector作为空间适配器,因为它的规则是后进先出,我们只需要关注尾插尾删即可,这样使用vector的效率是很高的。同理,我们在使用queue时可以传入list作为空间适配器。使用了适配器模式,我们的代码更加的简洁高效。

        除此之外,这里我们需要简单了解一下双端队列(deque),也就是上面给出的默认空间适配器。deque结合了数组和链表的特点,本来是设计出来准备替代它们的产物,但是显而易见,它失败了(不然现在我们就不会学数组和链表了)。作为结合数组和链表的产物,它的随机访问效率低于vector,中间插入删除效率也很低,虽然它缓解了一些vector和list本身的问题,但是它总归替代不了vector和list。可以说,deque的优势就是头插头删、尾插尾删效率很高,这非常适合用来适配stack和queue

优先级队列priority_queue

        优先级队列(priority_queue)在数据结构中对应我们之前学的数据结构中的堆,堆的使用也非常简单,我们只要大概看看文档即可。除此之外堆根据堆内元素之间的关系被分为大根堆和小根堆,堆的堆顶元素是整个堆中的最值,这可以帮我们解决经典的Top-k问题。

优先级队列的模拟实现

        在数据结构二叉树的学习阶段我们已经实现过堆的各种接口,只要稍加改动设计就成了一个优先级队列的模板,代码实现如下:

template<typename T, typename Container = std::vector<T>, typename Compare = std::less<T>>
class priority_queue
{
private:void AdjustDown(int parent){int child = 2 * parent + 1;while (child < _con.size()){if (child + 1 < _con.size() && _cmp(_con[child], _con[child+1])) child++;if (_cmp(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);parent = child;child = 2 * parent + 1;}else{break;}}   }void AdjustUp(int child){int parent = (child - 1) / 2;while (parent >= 0){if (_cmp(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);child = parent;parent = (child - 1) / 2;}else{break;}}}
public:priority_queue() {}template <typename InputIterator>priority_queue(InputIterator first, InputIterator last){while (first != last){_con.insert(_con.end(), *first);first++;}}bool empty() const{return _con.empty();}size_t size() const{return _con.size();}const T& top() const{return *(_con.begin());}void push(const T& x){_con.insert(_con.end(), x);AdjustUp(_con.size() - 1);}void pop(){std::swap(_con[0], _con[_con.size() - 1]);_con.erase(--_con.end());AdjustDown(0);}private:Container _con;Compare _cmp;
};

        首先我们看到优先级队列有三个模板参数,除了存储数据类型以外,还有空间适配器和仿函数。空间适配器想必大家比较熟悉了,对于堆来说,比较适合的类型就是数组vector。仿函数之前大家没有遇到过,这里为大家附上一个博客链接,大家可以看看:

C++ 仿函数_仿函数 c++_恋喵大鲤鱼的博客-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/K346K346/article/details/82818801        简单来说,仿函数就是一类可以当作函数使用的类,它具有和函数指针类似的作用,让我们可以轻松地控制生成许多效果不同的类,减少了代码冗余。

        而在优先级队列中,这个仿函数的作用是比较堆节点的大小关系,于是通过改变仿函数的种类,我们能够控制大小堆以及元素间比较的方式,优先级队列的默认仿函数为less,也就是默认的大根堆,这点需要注意。

        当然,在实现优先级队列的过程中,调整位置的算法是比较难的点,也希望大家能够多加练习巩固。

🍀结语

        以上就是今天博客的所有内容啦,希望能够帮助到大家。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/117973.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

内部类总结

内部类 1、内部类介绍&#xff1a; 外 2、成员内部类&#xff1a; 3、静态内部类 4、局部内部类&#xff1a; 5、匿名内部类&#xff1a;

【高效编程技巧】编程菜鸟和编程大佬的差距究竟在哪里?

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《高效编程技巧》《C语言进阶》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 &#x1f4cb; 前言1.如何写出好的代码&#xff1f;1.2 如何分析一个函数写的怎么样 2. 代码板式的重要性2.1 代码…

基于Open3D的点云处理16-特征点匹配

点云配准 将点云数据统一到一个世界坐标系的过程称之为点云配准或者点云拼接。&#xff08;registration/align&#xff09; 点云配准的过程其实就是找到同名点对&#xff1b;即找到在点云中处在真实世界同一位置的点。 常见的点云配准算法: ICP、Color ICP、Trimed-ICP 算法…

普通制造型企业,如何成就“链主品牌

“链主品牌”通常掌握产业链主导地位&#xff0c;对于普通制造型企业看起来是遥不可及的事情&#xff0c;事实上并非如此。从洞察穿越周期的“链主品牌”规律来看&#xff0c;做螺丝起家的伍尔特、做宠物牵引绳的福莱希等小企业也可以成为“链主品牌”。另外&#xff0c;由于新…

k8s etcd 简介

Etcd是CoreOS基于Raft协议开发的分布式key-value存储&#xff0c;可用于服务发现、共享配置以及一致性保障&#xff08;如数据库选主、分布式锁等&#xff09;。 如&#xff0c;Etcd也可以作为微服务的注册中心&#xff0c;比如SpringCloud也基于ETCD实现了注册中心功能&#…

LuatOS 开发指南

NDK 开发 官方教程 官方例程 API 下载软件 下载官方NDK例程压缩包到本地&#xff0c;并解压。可以看到目录如下&#xff1a; doc: 文档教程 env: 编译环境 example: NDK示例 platform: 需要编译的平台&#xff08;air72x/air8xx&#xff09; tools: 其他辅助软件 VSCode 使…

C语言:动态内存(一篇拿捏动态内存!)

目录 学习目标&#xff1a; 为什么存在动态内存分配 动态内存函数&#xff1a; 1. malloc 和 free 2. calloc 3. realloc 常见的动态内存错误&#xff1a; 1. 对NULL指针的解引用操作 2. 对动态开辟空间的越界访问 3. 对非动态开辟内存使用free释放 4. 使用free释…

算法leetcode|74. 搜索二维矩阵(rust重拳出击)

文章目录 74. 搜索二维矩阵&#xff1a;样例 1&#xff1a;样例 2&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 74. 搜索二维矩阵&#xff1a; 给你一个满足下述两条属性的…

无涯教程-JavaScript - HYPGEOMDIST函数

HYPGEOMDIST函数替代Excel 2010中的HYPGEOM.DIST函数。 描述 该函数返回超几何分布。 HYPGEOMDIST返回给定样本数量,给定样本数量,总体成功率和总体数量的概率。 将HYPGEOMDIST用于具有有限总体的问题,其中每个观察输出都是成功或失败,并且给定大小的每个子集的选择可能性均…

Lnmp架构

关闭防火墙 安装依赖包 yum -y install pcre-devel zlib-devel gcc gcc-c make 创建运行用户、组 编译安装Nginx 让系统识别nginx的操作命令 添加Nginx系统服务 vim /lib/systemd/system/nginx.service 编译安装mysql 安装Mysql环境依赖包 创建运行用户 编译安装 cd /opt …

OJ练习第160题——LRU 缓存

LRU 缓存 力扣链接&#xff1a;146. LRU 缓存 题目描述 请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。 实现 LRUCache 类&#xff1a; LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存 int get(int key) 如果关键字 key 存在于缓…

Python Opencv实践 - 拉普拉斯(Laplacian)算子边缘检测

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_GRAYSCALE) print(img.shape)#拉普拉斯边缘检测 #cv.Laplacian(src, ddepth, dst, ksize, scale, delta, borderType) #src:原图 …

【ES】笔记-集合介绍与API

集合是一种不允许值重复的顺序数据结构。 通过集合我们可以进行并集、交集、差集等数学运算&#xff0c; 还会更深入的理解如何使用 ECMAScript 2015(ES2015)原生的 Set 类。 构建数据集合 集合是由一组无序且唯一(即不能重复)的项组成的。该数据结构使用了与有限集合相同的数…

【小吉送书—第一期】Kali Linux高级渗透测试

文章目录 &#x1f354;前言&#x1f6f8;读者对象&#x1f388;本书资源&#x1f384;彩蛋 &#x1f354;前言 对于企业网络安全建设工作的质量保障&#xff0c;业界普遍遵循PDCA&#xff08;计划&#xff08;Plan&#xff09;、实施&#xff08;Do&#xff09;、检查&#x…

论文阅读_扩散模型_LDM

英文名称: High-Resolution Image Synthesis with Latent Diffusion Models 中文名称: 使用潜空间扩散模型合成高分辨率图像 地址: https://ieeexplore.ieee.org/document/9878449/ 代码: https://github.com/CompVis/latent-diffusion 作者&#xff1a;Robin Rombach 日期: 20…

Particle Life粒子生命演化的MATLAB模拟

Particle Life粒子生命演化的MATLAB模拟 0 前言1 基本原理1.1 力影响-吸引排斥行为1.2 距离rmax影响 2 多种粒子相互作用2.1 双种粒子作用2.1 多种粒子作用 3 代码 惯例声明&#xff1a;本人没有相关的工程应用经验&#xff0c;只是纯粹对相关算法感兴趣才写此博客。所以如果有…

2023-09-02 LeetCode每日一题(最多可以摧毁的敌人城堡数目)

2023-09-02每日一题 一、题目编号 2511. 最多可以摧毁的敌人城堡数目二、题目链接 点击跳转到题目位置 三、题目描述 给你一个长度为 n &#xff0c;下标从 0 开始的整数数组 forts &#xff0c;表示一些城堡。forts[i] 可以是 -1 &#xff0c;0 或者 1 &#xff0c;其中&…

leetcode 189. 轮转数组

2023.9.3 k的取值范围为0~100000&#xff0c;此时需要考虑到两种情况&#xff0c;当k为0时&#xff0c;此时数组不需要轮转&#xff0c;因此直接return返回&#xff1b;当k大于等于数组nums的大小时&#xff0c;数组将会转为原来的数组&#xff0c;然后再接着轮转&#xff0c;此…

快速上手GIT命令,现学也能登堂入室

系列文章目录 手把手教你安装Git&#xff0c;萌新迈向专业的必备一步 GIT命令只会抄却不理解&#xff1f;看完原理才能事半功倍&#xff01; 快速上手GIT命令&#xff0c;现学也能登堂入室 系列文章目录一、GIT HELP1. 命令文档2. 简要说明 二、配置1. 配置列表2. 增删改查3. …

flutter自定义按钮-文本按钮

目录 前言 需求 实现 前言 最近闲着无聊学习了flutter的一下知识&#xff0c;发现flutter和安卓之间&#xff0c;页面开发的方式还是有较大的差异的&#xff0c;众所周知&#xff0c;android的页面开发都是写在xml文件中的&#xff0c;而flutter直接写在代码里&#xff08;da…