MATLAB实现AHP层次分析法——以情人节选取礼物为例

问题背景

情人节来临之际,广大直男(女)同胞在给异性朋友选购礼物时会遇到难题——什么才是礼物好坏最重要的标准?基于层次分析法AHP进行计算,得出最高权重的指标,给出各位朋友选购礼物的一种思路,指导大家选到更为贴切的礼物。

使用模型:

AHP层次分析法

反思与总结

  1. AHP算法的主观性还是很强,虽然较直男的主观臆断来说相对好些,但在构造判断矩阵时的主观臆断很难规避。
  2. 另外,对于性别、职业等问题,AHP的局限性更加明显。
  3. 解决方法,就是在大量的调查数据中取平均,构造尽可能客观的判断矩阵

目录

一.指标确定(建立准则层)

二.权值确定:

三.举例验证(建立方案层) 

四.AHP的理论知识

五.MATLAB代码实现


一.指标确定(建立准则层)

(1)问题分析

学生党在给自己的couple挑选礼物时,需要考虑哪些主要方面?根据知乎、b站、抖音等自媒体平台和知网上面的相关文献,得出以下几个比较主要的考虑指标:

  1. 实用性
  2. 纪念价值(心意):
  3. 价位
  4. 外观
  5. 主权(“有个人身份的象征标志:如戒指上面刻字”):
  6. 他(她)的喜好

        …………等

为了便于统计分析,选取其中“心意、价位、实用性、喜好”四项作为本次分析的指标。

接下来我们将计算各种指标的权值,具体有如下三种方式:

  1. 笔者角度:作为0.5倍的直男,对指标进行打分
  2. 统计分析:分别统计100+个男生、女生对权重的打分,取平均值
  3. 进行层次分析法思想:实现分而治之,对各种指标两两比较,理性计算权值

如上三种统计方式中:

  1. 对于男性,按照0.1、0.1,0.8的权重再取各自的加权,计算最终指标的权重。
  2. 对于女性,由于笔者是男性,出于减少主观性的角度考虑,第一项和第三项均无法计算,直接按照第二项——问卷取平均分即可。

(2)对于男性:

1.笔者自己赋予的权重

根据笔者的直男思想,赋予如下表中的权值:

2.统计分析13位男生:

由于调查方式有限,本次调查仅获取到13位男生的想法,为了保证结果的严谨性,首先对异常值进行剔除,最后有11名男生的数据认为真实有效,并使用算术平均计算各项的均分,结果经可视化处理后如下:

3.层次分析法思想:

  • 原理:

如果一次性考虑全部四个指标,往往会考虑不周;如果我们采取分而治之的思想,两两比较,最终根据结果推算权重,相比之下会周到很多。

  • 局限性:

出于笔者自身角度考虑,故赋予权值时主观性仍然很强。

(优化方法:调查问卷取平均,不过该方法比较专业化,面向大众调查时统计数据由一定的难度)。

4.具体实现步骤:

  • 首先,给出两两比较的重要程度表:

  • 进行判断:根据组合数原理C(4,2),一共需要比较6次。

       如下图:黄色越深代表越重要,蓝色越深代表越不重要

上图得到的结果,即为层次分析法中的判断矩阵。

  • 判断矩阵的一致性检验

在层次分析法的判断矩阵中,可能会出现这样的问题:不一致现象。

我们做出如下假设:A代表心意,B代表价位,C代表实用性。

在矩阵中的(2,1)号元素,我们发现,A之于B的重要程度为5——即心意远大于价位这件事是正确的。假设此时(3,1)号元素的值也为1,则有A=C成立——即心意和实用性一样重要。但当我们观察(2,3)号元素,会发现:实用性之于价位的重要程度为2,与心意之于价位的重要程度是不相同的,我们把这样的矛盾称为不一致现象。

在层次分析法中有如下的定义,若判断矩阵为完全一致矩阵,则必有(m,n)的元素与(n,k)的元素相乘的结果与(m,k)中的元素值相等。

且很容易得出结论:一致矩阵的行和列之间是成倍数关系的。

在层次分析法中,的要求各指标形成的判断矩阵必须一致,才可以进一步计算各指标的权值。然而,结合实际问题与主观因素的影响,构造绝对的一致性矩阵往往是不现实的。

因此我们采用一致性检验。所谓一致性检验,就是检查真实构造出的判断矩阵和一致性矩阵是否有较大差距。原理大致如下,这里不予证明。

使用MATLAB计算本文中判断矩阵的最大特征值,结果为4.1580,代码段在附录之中。

接下来开始一致性检验,步骤不再赘述,大致如下:

经计算,CR的值为0.5918,因为CR>0.1,所以上述判断矩阵未经过一致性检验,需要对判断矩阵进行修正!上述情况也一定程度体现出了AHP方法的局限性。

后经过6次修改,得到崭新的判断矩阵,如下图。

上述判断矩阵的一致性比例是0.0598<0.1,故我们可以认为其满足一致性检验,且上述矩阵为真正使用的矩阵。

  • 计算各项指标的权值

在满足一致性检验之后,即可对判断矩阵进行加权的计算。在计算加权时,我们有三种计算方法,分别是算术平均法、几何平均法以及特征值法,为了保证结果的严谨性,此处的三种计算方式将全部使用。此外,无论哪种计算权重的方法,在计算前先要对判断矩阵进行归一化处理。

经MATLAB计算,归一化处理的矩阵为上图。

接下来分别使用三种方式计算4项指标各自的权重:

算术平均法:

根据MATLAB软件,计算得权重为以下值:

指标

权值

心意

0.4091

价位

0.0825

实用性

0.1585

喜好

0.3499

几何平均法:

根据MATLAB软件,计算得权重为以下值:

指标

权值

心意

0.4094

价位

0.0827

实用性

0.1581

喜好

0.3498

特征值法:

根据MATLAB软件,计算得权重为以下值:

指标

权值

心意

0.4098

价位

0.0824

实用性

0.1579

喜好

0.3499

综上所述,三种方式求得的指标权值如下表所示:

指标

算术平均法

几何平均法

特征值法

心意

0.4091

0.4094

0.4098

价位

0.0825

0.0827

0.0824

实用性

0.1585

0.1581

0.1579

喜好

0.3499

0.3498

0.3499

从上表可以看出,三种方法求得的权值近乎相同,这与一致性指标较小——即矩阵一致性较强有关。这里我们采用进一步的算术平均法,为三种方式赋予相同的权重,计算最后的指标权重,如下图:

指标

AHP法权值

心意

0.4094

价位

0.0825

实用性

0.1582

喜好

0.3499

总和

1.0000

上表即为层次分析法APH所求得的指标权值。

(3)对于女生

由于笔者是男生,所以无法通过方法一及方法三计算权值,只能通过搜集问卷来统计分析。

问卷中调查了120位给出的结果,在去除异常值后,得到如下的权值分布(此处的饼图按照整数制作,具体数值在之后会给出):

二.权值确定:

对于男生,三种方式的计算结果分别如下:

指标

直男主观臆断

调查统计

层次分析法AHP

心意

0.5

0.38

0.4094

价位

0.1

0.26

0.0825

实用性

0.15

0.13

0.1582

喜好

0.25

0.23

0.3499

权值

0.1

0.1

0.8

则最终得到的男生选礼物时的权重为:

指标

最终权值

心意

0.4035

价位

0.1028

实用性

0.1545

喜好

0.3402

对于女生,直接按照统计结果,即可得出各项指标的权重。

指标

最终权值

心意

0.3208

价位

0.2025

实用性

0.2009

喜好

0.2758

三.举例验证(建立方案层) 

在问卷中,笔者还调查了两性在送另一半礼物时典型的几种选择,归纳整理后,大致如下(各四类):

男生:

  1. 零食
  2. 首饰类
  3. 小玩偶
  4. 护肤(化妆)品

女生:

  1. 自己亲手做的一类物品(画画,蛋糕等)
  2. 衣服
  3. 游戏
  4. 体育用品

1.男生选择礼物的最佳方案

对于男生,我们采用上述四种礼物作为方案层,计算各项指标的得分。

首先,我们使用同样的方式,建立各种物品在4种指标下的权重,并建立判断矩阵,并用MATLAB检验是否满足一致性,代码部分同样在附录之中。

为了节约篇幅,此处直接给出经计算过后的结果:

 


用CR1,CR2,CR3,CR4个变量分别代表四个判断矩阵的一致性指标,计算结果如下:

一致性指标

结果大小

CR1

0.0790

CR2

0.0536

CR3

0.0667

CR4

0.0380

由于4个一致性指标均小于0.1,则可认为上述4个判断矩阵均满足一致性。

接下来计算判断矩阵中的各项权值,计算结果如下表

心意

权值

零食

0.0759

首饰类

0.4428

小玩偶

0.2310

化妆品

0.2503

价位

权值

零食

0.5235

首饰类

0.0959

小玩偶

0.2951

化妆品

0.0856

实用性

权值

零食

0.5478

首饰类

0.1276

小玩偶

0.0751

化妆品

0.2496

喜好

权值

零食

0.1402

首饰类

0.5192

小玩偶

0.0810

化妆品

0.2596

计算完权值后,接下来将计算各个选择(方案)的得分,对应得分与权值相乘后再*100后得到最终得分:

如下表:

指标

权值

零食

首饰类

小玩偶

化妆品

心意

0.4035

0.0759

0.5235

0.5478

0.1402

价位

0.1028

0.4428

0.0959

0.1276

0.5192

实用性

0.1545

0.2310

0.2951

0.0751

0.0810

喜好

0.3402

0.2503

0.0856

0.2496

0.2596

得分

-------

19.698705

17.179195

34.253791

21.393074

根据上表可以得知,从男生送礼物的角度考虑,小玩偶是最合适的选择。

2.女生选择礼物的最佳方案:

由于笔者为男性,此处出于客观性考虑,无法建立判断矩阵,故女生的最佳选择这里不予以计算。

四.AHP的理论知识

1.建立层次结构

在本次模型建立过程中,目标层——即最终解决的问题是:出于自身情况考虑,哪种礼物更适合送给异性?准则层的4项指标,则是出于送礼物时需要考虑的方向。目标层的4个元素,是在统计分析后抽取出的典例,用于计算得分后给出最佳方案。故对于男生,建立的层次结构如下图所示:

 

对于女生,出于客观性考虑,本次不建立层次结构,只给出大众化的一个考虑指标权重。

2.构造判断矩阵

对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较矩阵(判断矩阵)。

本文之前已经给出了准则层与方案层各个元素的判断矩阵,这里不再赘述。

3.计算指标权值

构造出一致性判断矩阵后,对结果进行计算,计算方式为方案层判断矩阵得分乘以准则层判断矩阵权值,此处同样省略计算步骤。

4.计算最终得分(得出目标层)

根据计算结果,选择得分最高的一项作为目标层的结果。本文中男生选礼物的最佳方案为小玩偶。

五.MATLAB代码实现

直接整合到一起了,大家根据注释自行阅读~

%%1.首先计算最大特征值  X= [1,5,3,0.333;0.2,1,0.5,0.2;0.333,2,1,0.333;3,5,3,1];  
[V,D] = eig(X);   
% 求出A的特征值矩阵D和特征向量V  
max_eig=max(max(D));  
%获得最大特征值max_eig(拉姆达):4.1580  
%%2.计算相关变量,并完成一致性检验  
CI = (max_eig - 4) / (4-1);  
%%计算一致性指标CI(此处n的值为4)  
RI=0.089;  
%查表得到随机平均一致性指标,本次总共有4个决策元素(即挑选礼物的指标)  
%查表得知n=4时,RI=0.089  
CR=CI/RI;  
%计算一致性指标  
%CR=0.5918,第一次写出的判断矩阵未通过一致性检验,故需要对判断矩阵进行修正。  
Y=[1    5   3   1;  
0.2 1   0.5 0.25;  
0.3333  2   1   0.5;  
1   4   2   1;  
];  
[VN,DN] = eig(Y);   
max_eigN=max(max(DN));  
CIN = (max_eigN - 4) / (4-1);  
RIN=0.089;  
CRN=CIN/RIN;  
%CR1的值为0.0580,符合一致性检验  
%%3.对矩阵进行归一化处理(每一个元素除以其所在列的和)  
Sum_Y = sum(Y);  
[~,n] = size(Y);    
SUM_Y = repmat(Sum_Y,4,1);     
%%定义矩阵Stand_Y,即为最后的归一化处理矩阵。  
Stand_Y = Y ./ SUM_Y;  
%%4.算术平均法计算权重  
disp('算术平均法求权重的结果为:');  
disp(sum(Stand_Y,2)./4);  
%%5.几何平均法计算权重  
Prduct_Y = prod(Y,2);  
Prduct_4_Y = Prduct_Y .^ (1/4);  
disp('几何平均法求权重的结果为:');  
disp(Prduct_4_Y ./ sum(Prduct_4_Y));  
%%6.特征值法求权重:  
[a,b] = eig(Y);  
Max_eigN2 = max(max(b));  
[r,c]=find(b == Max_eigN2 , 1);  
disp('特征值法求权重的结果为:');  
disp( a(:,c) ./ sum(a(:,c)) );  
%%7.对四个方案层的元素分别构造判断矩阵,并计算权值  
%1号矩阵  
X1= [1  0.2 0.3333  0.25;  5  1   2   2;  3  0.5 1   1;  4  0.5 1   1;  
];  
[V1,D1] = eig(X1);   
max_eig1=max(max(D1));  
CI1 = (max_eig1 - 4) / (4-1);  
RI1=0.089;  
CR1=CI1/RI1;  
Sum_X1 = sum(X1);  
[~,n] = size(X1);    
SUM_X1 = repmat(Sum_X1,4,1);     
Stand_X1 = X1 ./ SUM_X1;  
disp('1号矩阵算术平均法求权重的结果为:');  
disp(sum(Stand_X1,2)./4);  
%2号矩阵  X2= [1 5   2   6;  
0.2 1   0.333   1;  
0.5 3   1   4;  
0.1667  1   0.25    1;  
];  
[V2,D2] = eig(X2);   
max_eig2=max(max(D2));  
CI2 = (max_eig2 - 4) / (4-1);  
RI2=0.089;  
CR2=CI2/RI2;  
Sum_X2 = sum(X2);  
[~,n] = size(X2);    
SUM_X2 = repmat(Sum_X2,4,1);     
Stand_X2 = X2 ./ SUM_X2;  
disp('2号矩阵算术平均法求权重的结果为:');  
disp(sum(Stand_X2,2)./4);  
%3号矩阵  X3= [1 5   7   2;  0.2    1   2   0.5;  
0.1429  0.5 1   0.3333;  
0.5 2   3   1;  
];  
[V3,D3] = eig(X3);   
max_eig3=max(max(D3));  
CI3 = (max_eig3 - 4) / (4-1);  
RI3=0.089;  
CR3=CI3/RI3;  
Sum_X3 = sum(X3);  
[~,n] = size(X3);    
SUM_X3 = repmat(Sum_X3,4,1);     
Stand_X3 = X3 ./ SUM_X3;  
disp('3号矩阵用算术平均法求权重的结果为::');  
disp(sum(Stand_X3,2)./4);  
%4号矩阵  
X4=[ 1  0.25    2   0.5;  
4   1   6   2;  
0.5 0.1667  1   0.333;  
2   0.5 3   1;  
];  
[V4,D4] = eig(X4);   
max_eig4=max(max(D4));  
CI4 = (max_eig4 - 4) / (4-1);  
RI4=0.089;  
CR4=CI4/RI4;  
Sum_X4 = sum(X4);  
[~,n] = size(X4);    
SUM_X4 = repmat(Sum_X4,4,1);     
Stand_X4 = X4 ./ SUM_X4;  
disp('4号矩阵用算术平均法求权重的结果为:');  
disp(sum(Stand_X4,2)./4);  

结束语:本贴旨在通过该例说明AHP的思想,在选择礼物时要结合具体情况谨慎考虑,避免雷区~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118214.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue框架--Vue中的数据绑定

Vue中有两种数据绑定的方式 1.单向数据绑定(v-band):数据只能够从data流向页面 2.双向数据绑定(v-model):数据不仅仅能够从data流向页面&#xff0c;也可以从页面流向data。 备注: 1.双向绑定一般都应用在表单类元素上。(如:input、select等有value属性值的标签上) 2.…

[ZenTao]源码阅读:自定义任务类型

1、module/custom/control.php 2、module/custom/model.php

C#-单例模式

文章目录 单例模式的概述为什么会有单例模式如何创建单例模式1、首先要保证&#xff0c;该对象 有且仅有一个2、其次&#xff0c;需要让外部能够获取到这个对象 示例通过 属性 获取单例 单例模式的概述 总结来说&#xff1a; 单例 就是只有 一个实例对象。 模式 说的是设计模式…

多线程的五种“打开”方式

1 概念 1.1 线程是什么&#xff1f;&#xff1f; 线程&#xff08;Thread&#xff09;是计算机科学中的一个基本概念&#xff0c;它是进程&#xff08;Process&#xff09;中的一个执行单元&#xff0c;负责执行程序的指令序列。线程是操作系统能够进行调度和执行的最小单位。…

Linux中的基础IO

目录 1、关于C语言中的文件操作符 1.1 C语言中写文件 1.2 C语言读文件 1.3 往显示器上输出信息 1.4 stdin & stdout & stderr 1.5 打开文件的方式 2、系统文件IO 2.1 写操作文件 2.2 读操作文件、 2.3 open open函数的返回值 2.4 文件描述符 0 & 1 &a…

赴日IT 如何提高去日本做程序员的几率?

其实想去日本做IT工作只要满足学历、日语、技术三个必要条件&#xff0c;具备这些条件应聘就好&#xff0c;不具备条件你就想办法具备这些条件&#xff0c;在不具备条件之前不要轻易到日本去&#xff0c;日本IT行业虽然要求技术没有国内那么高&#xff0c;但也不是随便好进入的…

uniapp 微信小程序添加隐私保护指引

隐私弹窗&#xff1a; <uni-popup ref"popup"><view class"popupWrap"><view class"popupTxt">在你使用【最美万年历】之前&#xff0c;请仔细阅读<text class"blueColor" click"handleOpenPrivacyContract…

Spark【RDD编程(二)RDD编程基础】

前言 接上午的那一篇&#xff0c;下午我们学习剩下的RDD编程&#xff0c;RDD操作中的剩下的转换操作和行动操作&#xff0c;最好把剩下的RDD编程都学完。 Spark【RDD编程&#xff08;一&#xff09;RDD编程基础】 RDD 转换操作 6、distinct 对 RDD 集合内部的元素进行去重…

C语言:截断+整型提升+算数转换练习

详情关于整型提升、算数转换与截断见文章&#xff1a; 《C语言&#xff1a;整型提升》 《C语言&#xff1a;算数转换》 一、代码一 int main() { char a -1; signed char b -1; unsigned char c -1; printf("%d %d %d", a, b, c); return 0; } 求…

ToBeWritten之VSOC安全运营

也许每个人出生的时候都以为这世界都是为他一个人而存在的&#xff0c;当他发现自己错的时候&#xff0c;他便开始长大 少走了弯路&#xff0c;也就错过了风景&#xff0c;无论如何&#xff0c;感谢经历 转移发布平台通知&#xff1a;将不再在CSDN博客发布新文章&#xff0c;敬…

华为OD:敏感字段加密

题目描述&#xff1a; 给定一个由多个命令字组成的命令字符串&#xff1a; 1、字符串长度小于等于127字节,只包含大小写字母,数字,下划线和偶数个双引号&#xff1b; 2、命令字之间以一个或多个下划线_进行分割&#xff1b; 3、可以通过两个双引号”"来标识包含下划线…

【实战】十一、看板页面及任务组页面开发(六) —— React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(二十八)

文章目录 一、项目起航&#xff1a;项目初始化与配置二、React 与 Hook 应用&#xff1a;实现项目列表三、TS 应用&#xff1a;JS神助攻 - 强类型四、JWT、用户认证与异步请求五、CSS 其实很简单 - 用 CSS-in-JS 添加样式六、用户体验优化 - 加载中和错误状态处理七、Hook&…

pytest笔记: pytest单元测试框架

第一步&#xff1a;安装 和查看版本 pycharm settings 查看 第二步&#xff1a; 编写test_example.py def inc(x):return x1 def test_answer():assert inc(4) 5 第三步&#xff1a;在当前路径下执行pytest 命令 PS E:\data\web测试\Selenium3自动化测试实战——基于Pyth…

应用程序管理工具

应用程序管理是 DevOps 的重要组成部分。它可以定义为在所有阶段监控和管理软件应用程序的可用性、运行状况、性能和功能的过程&#xff0c;包括规划、设计、构建、测试、部署、维护和更新。这意味着应用程序从概念到停止都受到监控。 应用程序管理的重要性 管理应用程序可确…

db2迁移至oracle

1.思路 &#xff08;1&#xff09;用java连接数据库&#xff08;2&#xff09;把DB2数据导出为通用的格式如csv&#xff0c;json等&#xff08;3&#xff09;导入其他数据库&#xff0c;比如oracle&#xff0c;mongodb。这个方法自由发挥的空间比较大。朋友说他会用springboot…

《2023年网信人才培训-网络安全从业人员能力素养提升培训》第一期成功举办

随着网络强国和数字中国建设的步伐加快&#xff0c;建设规模宏大、结构合理、素质优良的人才队伍成为一项重要工作。知了汇智作为数字产教融合基地&#xff0c;通过与高校、企业等多方合作&#xff0c;建立了完整的网络安全人才培养生态链。凭借自身技术优势和丰富的产业资源&a…

新建工程——第一个S32DS工程

之前的"测试开发板"章节 测试开发板——第一个AutoSAR程序,使用了一个 demo 工程,不管是裸机程序还是 AutoSAR 程序,那都是别人已经创建好的工程。本节来介绍如何来创建自己的工程,本节介绍如何创建一个 S32DS 的工程,点亮开发板上的 LED 我们从官方提供的例程…

为什么删除Windows 11上的Bloatware可以帮助加快你的电脑速度

如果你感觉你的电脑迟钝&#xff0c;彻底清除软件会有所帮助&#xff0c;而且这个过程对Windows用户来说越来越容易。 微软正在使删除以前难以删除的其他预装Windows应用程序成为可能。专家表示&#xff0c;这项新功能可能会改变用户的游戏规则。 科技公司Infatica的主管Vlad…

测试人:“躺平?不可能的“, 盘点测试人在职场的优势

之前有这么一个段子&#xff1a;有人喜欢创造世界&#xff0c;他们做了程序员&#xff1b;有人喜欢拯救世界&#xff0c;他们做了测试员&#xff01;近几年&#xff0c;测试工程师在企业究竟是怎么样的发展&#xff1f;随着企业对于用户体验的满意度越来越重视&#xff0c;更加…

两个线程同步执行:解决乱箭穿心(STL/Windows/Linux)

C自学精简教程 目录(必读) C并发编程入门 目录 多线程同步 线程之间同步是指线程等待其他线程执行完某个动作之后再执行&#xff08;本文情况&#xff09;。 线程同步还可以是像十字路口的红绿灯一样&#xff0c;只允许一个方向的车同行&#xff0c;其他方向的车等待。 本…