推荐个一行代码的Python可视化神器

学过Python数据分析的朋友都知道,在可视化的工具中,有很多优秀的三方库,比如matplotlib,seaborn,plotly,Boken,pyecharts等等。这些可视化库都有自己的特点,在实际应用中也广为大家使用。

plotly、Boken等都是交互式的可视化工具,结合Jupyter notebook可以非常灵活方便地展现分析后的结果。虽然做出的效果非常的炫酷,比如plotly,但是每一次都需要写很长的代码,一是麻烦,二是不便于维护。

我觉得在数据的分析阶段,更多的时间应该放在分析上,维度选择、拆解合并,业务理解和判断。如果既可以减少代码量,又可以做出炫酷可视化效果,那将大大提高效率。当然如果有特别的需求除外,此方法仅针对想要快速可视化进行分析的人。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

相关文件及代码都已上传,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88194,备注:来自CSDN + 加群
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

本篇给大家介绍一个非常棒的工具,cufflinks,可以完美解决这个问题,且效果一样炫酷。

cufflinks介绍

就像seaborn封装了matplotlib一样,cufflinks在plotly的基础上做了一进一步的包装,方法统一,参数配置简单。其次它还可以结合pandas的dataframe随意灵活地画图。可以把它形容为**“pandas like visualization”**

毫不夸张地说,画出各种炫酷的可视化图形,我只需一行代码,效率非常高,同时也降低了使用的门槛儿。

cufflinks的github链接如下:

https://github.com/santosjorge/cufflinks

cufflinks安装

安装不多说,直接pip install即可。

pip install cufflinks

cufflinks如何使用?

cufflinks库一直在不断更新,目前最新版为V0.14.0,支持plotly3.0。首先我们看看它都支持哪些种类的图形,可以通过help来查看。

import cufflinks as cf
cf.help()Use 'cufflinks.help(figure)' to see the list of available parameters for the given figure.
Use 'DataFrame.iplot(kind=figure)' to plot the respective figure
Figures:barboxbubblebubble3dcandlechoropletdistplotheatmaphistogramohlcpieratioscatterscatter3dscattergeospreadsurfaceviolin

使用方法其实很简单,我总结一下,它的格式大致是这样的:

图片

  • DataFrame: 代表pandas的数据框;

  • Figure: 代表我们上面看到的可绘制图形,比如bar、box、histogram等等;

  • iplot: 代表绘制方法,其中有很多参数可以进行配置,调节符合你自己风格的可视化图形;

cufflinks实例

我们通过几个实例感受一下上面的使用方法。使用过plotly的朋友可能知道,如果使用online模式,那么生成的图形是有限制的。所以,我们这里先设置为offline模式,这样就避免了出现次数限制问题。

import pandas as pd
import cufflinks as cf
import numpy as npcf.set_config_file(offline=True)

然后我们需要按照上面的使用格式来操作,首先我们需要有个DataFrame,如果手头没啥数据,那可以先生成个随机数。cufflinks有一个专门生成随机数的方法,叫做datagen,用于生成不同维度的随机数据,比如下面。

lines线图

cf.datagen.lines(1,500).ta_plot(study='sma',periods=[13,21,55])

1)cufflinks使用datagen生成随机数;

2)figure定义为lines形式,数据为(1,500);

3)然后再用ta_plot绘制这一组时间序列,参数设置SMA展现三个不同周期的时序分析。

图片

box箱型图

还是与上面用法一样,一行代码解决。

cf.datagen.box(20).iplot(kind='box',legend=False)

图片

可以看到,x轴每个box都有对应的名称,这是因为cufflinks通过kind参数识别了box图形,自动为它生成的名字。如果我们只生成随机数,它是这样子的,默认生成100行的随机分布的数据,列数由自己选定。

图片

histogram直方图

cf.datagen.histogram(3).iplot(kind='histogram')

图片

和plotly一样,我们可以通过一些辅助的小工具框选或者lasso选择来区分和选定指定区域,只要一行代码。

当然了,除了随机数据,任何的其它dataframe数据框都可以,包括我们自己导入的数据。

histogram条形图

df=pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df.iplot(kind='bar',barmode='stack')

图片

上面我们生成了一个(10,4)的dataframe数据框,名称分别是a,b,c,d。那么cufflinks将会根据iplot中的kind种类自动识别并绘制图形。参数设置为堆叠模式。

scatter散点图

df = pd.DataFrame(np.random.rand(50, 4), columns=['a', 'b', 'c', 'd'])
df.iplot(kind='scatter',mode='markers',colors=['orange','teal','blue','yellow'],size=10)

图片

bubble气泡图

df.iplot(kind='bubble',x='a',y='b',size='c')

图片

scatter matrix 散点矩阵图

df = pd.DataFrame(np.random.randn(1000, 4), columns=['a', 'b', 'c', 'd'])
df.scatter_matrix()

图片

subplots 子图

df=cf.datagen.lines(4)
df.iplot(subplots=True,shape=(4,1),shared_xaxes=True,vertical_spacing=.02,fill=True)

图片

df.iplot(subplots=True,subplot_titles=True,legend=False)

图片

再比如复杂一点的。

df=cf.datagen.bubble(10,50,mode='stocks')
figs=cf.figures(df,[dict(kind='histogram',keys='x',color='blue'),dict(kind='scatter',mode='markers',x='x',y='y',size=5),dict(kind='scatter',mode='markers',x='x',y='y',size=5,color='teal')],asList=True)
figs.append(cf.datagen.lines(1).figure(bestfit=True,colors=['blue'],bestfit_colors=['pink']))
base_layout=cf.tools.get_base_layout(figs)
sp=cf.subplots(figs,shape=(3,2),base_layout=base_layout,vertical_spacing=.15,horizontal_spacing=.03,specs=[[{'rowspan':2},{}],[None,{}],[{'colspan':2},None]],subplot_titles=['Histogram','Scatter 1','Scatter 2','Bestfit Line'])
sp['layout'].update(showlegend=False)
cf.iplot(sp)

图片

shapes 形状图

如果我们想在lines图上增加一些直线作为参考基准,这时候我们可以使用hlines的类型图。

df=cf.datagen.lines(3,columns=['a','b','c'])
df.iplot(hline=[dict(y=-1,color='blue',width=3),dict(y=1,color='pink',dash='dash')])

图片

或者是将某个区域标记出来,可以使用hspan类型。

df.iplot(hspan=[(-1,1),(2,5)])

图片

又或者是竖条的区域,可以用vspan类型。

df.iplot(vspan={'x0':'2015-02-15','x1':'2015-03-15','color':'teal','fill':True,'opacity':.4})

图片

如果对iplot中的参数不熟练,直接输入以下代码即可查询。

help(df.iplot)

总结

怎么样,是不是非常快捷方便?以上介绍是一般的可绘制类型,当然你可以根据自己的需求做出更多的可视化图形。如果是常规图形,一行即可实现。除此外,cufflinks还有强大的颜色管理功能,如果感兴趣可以自行学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118307.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在springboot中配置mybatis(mybatis-plus)mapper.xml扫描路径的问题

我曾经遇到过类似问题: mybatis-plus的mapper.xml在src/main/java路径下如何配置pom.xml和application.yml_idea 把mapper文件放到java下如何配置_梓沂的博客-CSDN博客 当时只是找到解决问题的办法,但对mybatis配置来龙去脉并未深入了解,所…

操作系统备考学习 day1 (1.1.1-1.3.1)

操作系统备考学习 day1 计算机系统概述操作系统的基本概念操作系统的概念、功能和目标操作系统的四个特征并发共享虚拟异步 操作系统的发展和分类操作系统的运行环境操作系统的运行机制 年初做了一个c的webserver 的项目,在学习过程中已经解除部分操作系统的知识&am…

解决Debian系统通过cifs挂载smb后,中文目录乱码问题

解决Debian系统通过cifs挂载smb后,中文目录乱码问题 //$smb_server/share /mnt/nas_share cifs credentials/root/.smbcredentials,iocharsetutf8 0 0默认通过以上命令挂载smb,但是在查看文件目录时,中文乱码 解决问题方式: de…

C语言——指针基本语法

概述 内存地址 在计算机内存中,每个存储单元都有一个唯一的地址(内存编号)。 通俗理解,内存就是房间,地址就是门牌号 指针和指针变量 指针(Pointer)是一种特殊的变量类型,它用于存储内存地址。 指针的实…

iOS脱壳之frida-ios-dump

frida-ios-dump介绍 该工具基于frida提供的强大功能通过注入js实现内存dump然后通过python自动拷贝到电脑生成ipa文件,适合现iOS11版本之后的越狱手机使用。 下载 https://github.com/AloneMonkey/frida-ios-dump环境安装 电脑环境安装 win和Mac 环境一样都是…

美创科技一体化智能化公共数据平台数据安全建设实践

公共数据是当今政府数字化转型的关键要素和未来价值释放的核心锚点,也是“网络强国”、“数字中国”的战略性资源。 作为数字化改革先行省份,近年来,浙江省以一体化智能化公共数据平台作为数字化改革的支撑总平台,实现了全省公共数…

基于Vue前端框架构建BI应用程序

一、什么是Vue? Vue(Vue.js)是一个轻量级、高性能、可组件化的MVVM库。简而言之,是一个构建数据驱动的web界面的渐进式框架。它采用MVVM思想,通过数据双向绑定实现数据的动态渲染,同时也支持组件化的开发方…

gitee上传本地项目bug

🤮这个破bug不知道浪费了多长时间,以前没有记录,每次都忘记,这次记下来 问题描述 gitee创建仓库,然后根据它提示的如下命令,但一直报错 原因分析: 把命令复制出来,粘贴到Sublime …

Centos误删系统自带python2.7,yum报错恢复方法

使用wget分别下载python以及yum的rpm包 资源地址如下: http://vault.centos.org mkdir /usr/local/src/pythoncd /usr/local/src/pythonwget http://vault.centos.org/7.6.1810/os/x86_64/Packages/python-backports-1.0-8.el7.x86_64.rpmwget ht…

PostgreSQL分区表

什么是分区表 数据库分区表将表数据分成更小的物理分片,以此提高性能、可用性、易管理性。分区表是关系型数据库中比较常见的对大表的优化方式,数据库管理系统一般都提供了分区管理,而业务可以直接访问分区表而不需要调整业务架构&#xff0c…

C++ 动态内存

C 程序中的内存分为栈和堆两个部分: 栈:在函数内部声明的所有变量都将占用栈内存;堆:这是程序中未使用的内存,在程序运行时可用于动态分配内存。 堆与栈的详细请参考:一文读懂堆与栈的区别_堆和栈的区别_恋…

[二分查找] 旋转数组

1. &#xff08;严格递增序列&#xff09;旋转数组的元素查找 简单来说分为三种情况进行分析 1. 整个旋转数组单调递增 根据x和A[mid]的大小关系&#xff0c;更迭范围。 // 1. 整个旋转数组单调递增if (A[left]<A[right]){if (A[mid] x)return mid;else if (x < A[mid]…

【Linux】Libevent相关小知识总结

Libevent是基于事件的&#xff0c;也就是说&#xff0c;相当于去注册一个事件&#xff0c;当这个事件发生的话&#xff0c;那么就会调用回调函数。

25.CSS自定义形状按钮与悬停效果

效果 源码 <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>CSS Custom Shape Button</title><link rel="stylesheet" href="style.css"> </head> <body&…

操作系统的发展和分类

注意&#xff1a;每个阶段的主要优点都是解决了上个阶段的缺点 1.手工操作阶段 概括&#xff1a;一个用户在一段时间内独占全机&#xff0c;导致资源利用率极低&#xff0c;用户输入指令给机器&#xff0c;然后机器运行响应给用户。 2.批处理阶段 2.1单道批处理系统 优点&…

docker命令学习

docker vscode插件出现的问题 docker命令 docker images &#xff08;查看所有的镜像&#xff09; docker ps -a &#xff08;查看所有的容器&#xff09; docker ps &#xff08;查看运行的容器&#xff09; docker run imageID docker run --gpus all --shm-size8g -it imag…

A Mathematical Framework for Transformer Circuits—Part (1)

A Mathematical Framework for Transformer Circuits 前言Summary of ResultsREVERSE ENGINEERING RESULTSCONCEPTUAL TAKE-AWAYS Transformer OverviewModel SimplificationsHigh-Level ArchitectureVirtual Weights and the Residual Stream as a Communication ChannelVIRTU…

16.WebSocket聊天室

基于SpringBoot 2.6.11 1.WebSocket WebSocket 是 HTML5 开始提供的一种在单个 TCP 连接上进行全双工通讯的协议&#xff0c;可以在html页面直接使用。 WebSocket 使得客户端和服务器之间的数据交换变得更加简单&#xff0c;允许服务端主动向客户端推送数据。在 WebSocket A…

java对时间序列根据阈值进行连续性分片

问题描述&#xff1a;我需要对一个连续的时间戳list进行分片&#xff0c;分片规则是下一个数据比当前数据要大于某一个阈值则进行分片&#xff1b; 解决方式&#xff1a; 1、输入的有顺序的list &#xff0c;和需要进行分片的阈值 2、调用方法&#xff0c;填入该排序的list和阈…

docker安装redis,并挂载配置文件

1&#xff1a;下载镜像&#xff0c;不添加版本 默认下载最新的 docker pull redis下载成功后如图所示 2&#xff1a;下载redis配置文件&#xff0c;我是在docker中下载的&#xff0c;也可以使用文件上传工具将配置文件上传到自己指定的目录。 首先需要安装wget&#xff0c;否…