求解整数规划问题的割平面法和分支定界法

文章目录

  • 整数规划
  • 割平面法
  • 分支定界法
  • 代码实现

整数规划

整数规划问题是优化变量必须取整数值的线性或非线性规划问题,不过,在大多数情况下,整数规划问题指的是整数线性规划问题。

其数学模型为
m i n f ( x ) = c T x s.t A x = b x ≥ 0 x i ∈ I , i ∈ I ⊂ { 1 , 2 , . . . , n } min \quad f(\pmb x)=\pmb c^T\pmb x \\ \text{s.t} \quad \pmb A\pmb x=\pmb b \\ \pmb x ≥ 0\\ x_i \in I, i\in I \subset\{1,2,...,n\} minf(x)=cTxs.tAx=bx0xiI,iI{1,2,...,n}
特别地,如果 I = { 0 , 1 } I = \{0, 1\} I={0,1},上述模型也被称为0-1规划问题。

相比此前已经介绍的线性规划问题,整数规划问题其实就是多了组整数约束。鉴于两者如此紧密的关系,如下所示的线性规划问题被称为整数规划问题的松弛问题。
m i n f ( x ) = c T x s.t A x = b x ≥ 0 min \quad f(\pmb x)=\pmb c^T\pmb x \\ \text{s.t} \quad \pmb A\pmb x=\pmb b \\ \pmb x ≥ 0 minf(x)=cTxs.tAx=bx0

虽然看起来只是优化变量多了组整数条件的约束,但是在理论上,整数规划问题的求解已经不再是多项式复杂度了。

目前最常用的整数规划问题求解算法有两个:割平面法和分支定界法。不用被名字吓到,它们的本质都只是在单纯形法之外再额外增加一些算法逻辑,从而保证可以取到整数解。而这些算法逻辑,更像是算法框架,通过简单的实例就能描述清楚其背后的设计思想。

割平面法

本节通过求解如下的一个整数规划问题,来说明割平面法的算法原理。
m i n z = − 5 x 1 − 8 x 2 s.t x 1 + x 2 + x 3 = 6 5 x 1 + 9 x 2 + x 4 = 45 x 1 , x 2 , x 3 , x 4 ≥ 0 , 且只能取整数 min \quad z= -5x_1-8x_2 \\ \text{s.t} \quad x_1+x_2+x_3=6 \\ \nonumber 5x_1+9x_2+x_4=45 \\ \nonumber x_1,x_2,x_3,x_4≥0,且只能取整数 minz=5x18x2s.tx1+x2+x3=65x1+9x2+x4=45x1,x2,x3,x40,且只能取整数
首先计算其对应的松弛问题,得到最优解为
x 1 = 9 / 4 , x 2 = 15 / 4 x_1=9/4,x_2=15/4 x1=9/4,x2=15/4
下图中,A点即为最优解。显然,该解并不满足优化变量为整数的约束。


此时,割平面法的思路是:先把A点附近的非整数区域从可行域中切掉,然后再重新计算最优解。“切”的数学描述可以表达为:给松弛问题增加一个约束。本实例中,约束的表达式为
0.75 x 3 + 0.25 x 4 ≥ 0.75 0.75x_3+0.25x_4≥0.75 0.75x3+0.25x40.75
增加约束后,可行域如下图所示,重新求解得到最优解为
x 1 = 0 , x 2 = 5 x_1=0,x_2=5 x1=0,x2=5
该解虽然是求解松弛问题得到的最优解,但由于也满足整数条件的约束,所以也自然是原整数规划的最优解。

现在唯一的问题就只有:如何得到新增的约束表达式?接下来详细阐述。

切割前,最优解对应的单纯形表如下所示。单纯形表是基于单纯形法得来的,这篇文章给予了详细说明。本文不单开章节描述单纯形表的创建和迭代过程,主要是因为在实际应用时并不需要这些。

-5-800
C_bbx_1x_2x_3x_4
-5x_19/4109/4-1/4
-8x_215/401-5/41/4

从单纯形表的 x 2 x_2 x2那一行,可知
15 4 = 0 x 1 + 1 x 2 − 5 4 x 3 + 1 4 x 4 \frac{15}{4}=0x_1+1x_2-\frac{5}{4}x_3+\frac{1}{4}x_4 415=0x1+1x245x3+41x4
将系数的整数部分和小数部分拆开,可得
3 + 3 4 = ( 0 + 0 ) x 1 + ( 1 + 0 ) x 2 + ( − 2 + 3 4 ) x 3 + ( 0 + 1 4 ) x 4 3+\frac{3}{4}=(0+0)x_1+(1+0)x_2+(-2+\frac{3}{4})x_3+(0+\frac{1}{4})x_4 3+43=(0+0)x1+(1+0)x2+(2+43)x3+(0+41)x4

合并整数和小数部分
( 0 x 1 + 1 x 2 − 2 x 3 + 0 x 4 − 3 ) + ( 0 x 1 + 0 x 2 + 3 4 x 3 + 1 4 x 4 ) = 3 4 (0x_1+1x_2-2x_3+0x_4-3)+(0x_1+0x_2+\frac{3}{4}x_3+\frac{1}{4}x_4)=\frac{3}{4} (0x1+1x22x3+0x43)+(0x1+0x2+43x3+41x4)=43

等式左边第一项为整数部分,而等式右边为 [ 0 , 1 ] [0,1] [0,1]的小数,所以等式左边第二项的小数部分必然大于等于右边的值,即
( 0 x 1 + 0 x 2 + 3 4 x 3 + 1 4 x 4 ) ≥ 3 4 (0x_1+0x_2+\frac{3}{4}x_3+\frac{1}{4}x_4)≥\frac{3}{4} (0x1+0x2+43x3+41x4)43
该式即刚刚我们要添加的约束。

当然了,从图上可以看出,横纵坐标是 x 1 , x 2 x_1,x_2 x1,x2,但是约束条件是关于 x 3 , x 4 x_3,x_4 x3,x4,所以要做可视化的话,还需要转换一下
x 3 = 6 − x 1 − x 2 , x 4 = 45 − 5 x 1 − 9 x 2 x_3=6-x_1-x_2, \quad x_4 = 45 - 5x_1 - 9x_2 x3=6x1x2,x4=455x19x2
然后代入新添加的约束,变为
2 x 1 + 3 x 2 ≤ 15 2x_1+3x_2≤15 2x1+3x215
这样就可以画出如上所示的图了。

至于为什么要选择 x 2 x_2 x2那一行来构造新的约束,这主要是因为,有经验表明,使用小数部分最大的那一行来构造约束,收敛会更快。

分支定界法

相比割平面法,分枝定界法的思路更容易理解。

以如下的实例为例:
m i n f ( x ) = − 10 x 1 − 20 x 2 s.t 5 x 1 + 8 x 2 ≤ 60 x 1 ≤ 8 x 2 ≤ 4 x 1 , x 2 ≥ 0 , 且只能取整数 min \quad f(\pmb x)= -10x_1-20x_2 \\ \text{s.t} \quad 5x_1+8x_2≤60 \\ x_1≤8 \\ x_2≤4 \\ x_1,x_2≥0,且只能取整数 minf(x)=10x120x2s.t5x1+8x260x18x24x1,x20,且只能取整数

(1) 定义P为原整数规划问题,P0为其对应的松弛问题,最优解为
x 0 = ( 5.6 , 4 ) , f 0 = − 136 \pmb x_0=(5.6,4),f_0=-136 x0=(5.6,4),f0=136
由于 x 0 \pmb x_0 x0不满足整数约束,所以该解并不是P的最优解。但是P的最优解 f ∗ f^\ast f肯定不会低于P0的最优解,所以 f 0 f_0 f0可以作为P的下界
f l b = − 136 f_{lb}=-136 flb=136

此外,我们很容易发现, x = ( 0 , 0 ) \pmb x=(0,0) x=(0,0)是P的一个可行解,此时 f = 0 f=0 f=0,P的最优解 f ∗ f^\ast f不会高于该值,所以P的上界是
f u b = 0 f_{ub}=0 fub=0

(2) 在P0的最优解中,由于 x 1 = 5.6 x_1=5.6 x1=5.6,引入两个互斥的约束条件:
x 1 ≤ 5 , x 1 ≥ 6 x_1≤5,x_1≥6 x15,x16
将这两个约束分别加入P中,得到子问题P1和P2。显然,P的最优解和P1、P2最优解的更小者相同。

求解P1对应的松弛问题,最优解为
x 1 = ( 5 , 4 ) , f 1 = − 130 \pmb x_1=(5,4),f_1=-130 x1=(5,4),f1=130
由于 x 1 \pmb x_1 x1为整数解,所以也是P1的最优解,上界 f u b f_{ub} fub可以修改为
f u b = f 1 = − 130 f_{ub}=f_1=-130 fub=f1=130
由于P1已经得到整数最优解,所以P1不需要再继续被分支。

求解P2对应的松弛问题,最优解为
x 2 = ( 6 , 3.75 ) , f 2 = − 135 \pmb x_2=(6,3.75),f_2=-135 x2=(6,3.75),f2=135
x 2 \pmb x_2 x2不满足整数条件,因此不是P2的最优解,但是 f ∗ f^\ast f不会低于 f 2 f_2 f2,所以可以更新下界
f l b = − 135 f_{lb}=-135 flb=135

(3) 在P2的最优解中,由于 x 2 = 3.75 x_2=3.75 x2=3.75,继续引入两个互斥的约束条件
x 2 ≤ 3 , x 2 ≥ 4 x_2≤3,x_2≥4 x23,x24
将这两个约束分别加入P2中,得到子问题P3和P4。

先求解P4对应的松弛问题,无可行解,所以可以停止分枝。

再求解P3对应的松弛问题,最优解为
x 3 = ( 7.2 , 3 ) , f 3 = − 132 \pmb x_3=(7.2,3),f_3=-132 x3=(7.2,3),f3=132
x 3 \pmb x_3 x3不满足整数条件,因此不是P3的最优解,但是 f ∗ f^\ast f不会低于 f 3 f_3 f3,所以可以继续更新下界
f l b = − 132 f_{lb}=-132 flb=132

(4) 在P3的最优解中,由于 x 1 = 7.2 x_1=7.2 x1=7.2,继续引入两个互斥的约束条件
x 1 ≤ 7 , x 1 ≥ 8 x_1≤7,x_1≥8 x17,x18
将这两个约束分别加入P3中,得到子问题P5和P6。

求解P5对应的松弛问题,最优解为
x 5 = ( 7 , 3 ) , f 5 = − 130 \pmb x_5=(7,3),f_5=-130 x5=(7,3),f5=130
由于 x 5 \pmb x_5 x5为整数解,所以也是P5的最优解,上界 f u b f_{ub} fub可以修改为
f ‾ = f 5 = − 130 \overline f=f_5=-130 f=f5=130
此时,P5不需要再继续被分支。

求解P6对应的松弛问题,最优解为
x 6 = ( 8 , 2.5 ) , f 6 = − 130 \pmb x_6=(8,2.5),f_6=-130 x6=(8,2.5),f6=130
x 6 \pmb x_6 x6不满足整数条件,但是 f 6 f_6 f6并不小于当前上界 f u b f_{ub} fub,所以该分支是“枯枝”,需要剪枝。

结合P5和P6,下界可以更新为
f l b = − 130 f_{lb}=-130 flb=130

此时,我们发现
f u b = f l b = − 130 f_{ub}=f_{lb}=-130 fub=flb=130
所以该问题的最优解为
x 1 = ( 5 , 4 ) 或 x 5 = ( 7 , 3 ) \pmb x_1=(5,4)或\pmb x_5=(7,3) x1=(5,4)x5=(7,3)
对应的目标函数值为
f ∗ = − 130 f^\ast=-130 f=130

分支定界的全过程可以参考下图。

总的来说,割平面法和分支定界法都是先计算原问题对应的松弛问题,然后判断松弛问题的最优解是否也满足整数约束,如果满足,那么皆大欢喜;反之,割平面法会通过增加约束的方式来改进松弛问题的可行域,以期达到松弛问题最优解亦为原问题最优解的目标;而分支定界法则利用分解技术,将原问题分解为若干个子问题并分别计算,然后基于子问题的求解结果持续更新原问题的上下界,直至两者相等。

代码实现

虽然割平面法和分支定界法的步骤看起来挺多的,但好在,求解器已经帮我们做好了集成的工作,所以我们可以直接调用现成的求解器来求解所遇到的整数规划问题。

基于Python调用ortools求解整数规划问题的代码,和此前介绍的线性规划代码的唯一不同点在于:整数规划中优化变量的定义是solver.IntVar,而线性规划中的定义方式是solver.NumVar。

以下是上一节整数规划问题的求解代码。

from ortools.linear_solver import pywraplpif __name__ == '__main__':# 声明ortools求解器,使用SCIP算法solver = pywraplp.Solver.CreateSolver('SCIP')# 优化变量x1 = solver.IntVar(0, 8, 'x1')x2 = solver.IntVar(0, 4., 'x2')# 目标函数solver.Minimize(-10 * x1 - 20 * x2)# 约束条件solver.Add(5 * x1 + 8 * x2 <= 60)# 模型求解status = solver.Solve()# 模型求解成功, 打印结果if status == pywraplp.Solver.OPTIMAL:# 变量最优解print('x1: {}, x2: {}'.format(x1.solution_value(), x2.solution_value()))# 最优目标函数值print('best_f =', solver.Objective().Value())else:print('not converge.')

运行代码后,可以得到最优解如下。显然,该解和上一节推演的结果是一致的。

x1: 5.0, x2: 4.0
best_f = -129.99999999999997

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118485.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM类的加载过程

加载过程 JVM的类的加载过程分为五个阶段&#xff1a;加载、验证、准备、解析、初始化。 加载   加载阶段就是将编译好的的class文件通过字节流的方式从硬盘或者通过网络加载到JVM虚拟机当中来。&#xff08;我们平时在Idea中书写的代码就是放在磁盘中的&#xff0c;也可以通…

Mysql主从服务安装配置

1.下载地址 MySQL :: Download MySQL Community Server (Archived Versions)https://downloads.mysql.com/archives/community/ 2.安装配置 1.下载解压后&#xff0c;拷贝一份作为slave的安装目录 3.配置my.ini 由于下载mysql8版本&#xff0c;解压后&#xff0c;没有相关的my…

Spark有两种常见的提交方式:client 模式和 cluster 模式对机器 CPU 的影响

Spark有两种常见的提交方式&#xff1a;client 模式和 cluster 模式。这两种方式对机器 CPU 的影响略有不同 &#xff0c;请参考以下说明 Client 模式&#xff1a; 在 Client 模式下&#xff0c;Spark Driver 运行在提交任务的客户端节点上&#xff08;即运行 spark-submit 命…

企业数据加密软件——「天锐绿盾」

「天锐绿盾」是一款企业数据加密软件&#xff0c;主要用于防止企业计算机信息被破坏、丢失和泄密。该软件采用文件过滤驱动实现透明加解密&#xff0c;对用户完全透明&#xff0c;不影响用户操作习惯。 PC访问地址&#xff1a; isite.baidu.com/site/wjz012xr/2eae091d-1b97-4…

Laravel 模型1对1关联 1对多关联 多对多关联 ⑩①

作者 : SYFStrive 博客首页 : HomePage &#x1f4dc;&#xff1a; THINK PHP &#x1f4cc;&#xff1a;个人社区&#xff08;欢迎大佬们加入&#xff09; &#x1f449;&#xff1a;社区链接&#x1f517; &#x1f4cc;&#xff1a;觉得文章不错可以点点关注 &#x1f44…

DNS原理

文章目录 一、域名产生背景域名的树形层次化结构 二、定义三、DNS查询模式递归查询迭代查询 四、主机域名解析工作流程五、H3C配置DNS代理 首先可以看下思维导图&#xff0c;以便更好的理解接下来的内容。 一、域名 产生背景 在互联网中&#xff0c;通过IP地址访问目标主机…

Python:多变量赋值

相关文章 Python专栏https://blog.csdn.net/weixin_45791458/category_12403403.html?spm1001.2014.3001.5482 Python中的赋值语句可以同时对多个变量进行对象绑定&#xff08;赋值&#xff09;&#xff0c;既可以是多变量链式赋值&#xff0c;也可以是多变量平行赋值&#x…

【LeetCode75】第四十二题 删除二叉搜索数中的节点

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一棵二叉搜索树&#xff0c;给我们一个目标值&#xff0c;让我们删除节点值等于目标值的节点&#xff0c;并且删除之后需要保持…

React 18 在组件间共享状态

参考文章 在组件间共享状态 有时候&#xff0c;希望两个组件的状态始终同步更改。要实现这一点&#xff0c;可以将相关 state 从这两个组件上移除&#xff0c;并把 state 放到它们的公共父级&#xff0c;再通过 props 将 state 传递给这两个组件。这被称为“状态提升”&#…

ELK安装、部署、调试(一)设计规划及准备

一、整体规划如图&#xff1a; 【filebeat】 需要收集日志的服务器&#xff0c;安装filebeat软件&#xff0c;用于收集日志。logstash也可以收集日志&#xff0c;但是占用的系统资源过大&#xff0c;所以使用了filebeat来收集日志。 【kafka】 接收filebeat的日志&#xff…

Docker从认识到实践再到底层原理(二-1)|容器技术发展史+虚拟化容器概念和简介

前言 那么这里博主先安利一些干货满满的专栏了&#xff01; 首先是博主的高质量博客的汇总&#xff0c;这个专栏里面的博客&#xff0c;都是博主最最用心写的一部分&#xff0c;干货满满&#xff0c;希望对大家有帮助。 高质量博客汇总 然后就是博主最近最花时间的一个专栏…

数据结构(Java实现)-Map和Set

搜索树 概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值 若它的右子树不为空&#xff0c;则右子树上所有节点的值都大于根节点的值 它的左右子树也…

Python爬虫-某网酒店数据

前言 本文是该专栏的第5篇,后面会持续分享python爬虫案例干货,记得关注。 本文以某网的酒店数据为例,实现根据目标城市获取酒店数据。具体思路和方法跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM6Ly93d3cuYnRoaG90ZWxzLmNvbS9saXN0L3NoYW5naGFp …

105. 从前序与中序遍历序列构造二叉树

给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 思路&#xff1a;题目给出了先序遍历和中序遍历的结果&#xff0c;因为先序遍历遵循根–>左–>…

继承【C++】

文章目录 继承的概念继承的定义继承方式和访问限定符继承基类成员访问方式的变化 默认继承方式 基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元静态成员菱形继承及菱形虚拟继承继承的方式 菱形虚拟继承菱形虚拟继承原理 继承的概念 继承(inheritance)…

自建音乐服务器Navidrome之二

6 准备音乐资源 可选 Last.fm Lastfm是 Audioscrobbler 音乐引擎设计团队的旗舰产品&#xff0c;以英国为总部的网络电台和音乐社区。有遍布232个国家超过1500万的活跃听众。据说有6亿音乐资源。 docker-compose.yml 配置 Navidrome 可以从 Last.fm 和 Spotify 获取专辑信息和…

用 ChatGPT 写代码太省时间了

几个月前&#xff0c;我们聊过陶哲轩使用 ChatGPT 辅助解决数学问题。当时&#xff0c;他觉得虽然测试结果不太令人满意&#xff0c;但也并没有对 ChatGPT 持完全否定的态度。他觉得&#xff0c;像 ChatGPT 这类大型语言模型在数学中可以用来做一些半成品的语义搜索工作&#x…

iOS开发Swift-4-IBAction,group,音乐播放器-木琴App

1.使用素材创建木琴App的UI。 2.连接IBAction。 其余按钮直接拖拽到play里边。 当鼠标置于1处时2处显示如图&#xff0c;表示成功。当用户按下任一按钮都会触发play中的内容。 3.将7个按钮的View中的Tag值分别调为1、2、3、4、5、6、7. 4.将音频文件拖入项目文件中。 Create gr…

VSCode连接服务器

Pycharm连接服务器参考我的另一篇文章Pycharm远程连接服务器_pycharm进入服务器虚拟环境终端_Jumbo星的博客-CSDN博客 本质上Pycharm和VSCode都只是IDE&#xff0c;没有什么好坏之分。但是因为Pycharm连接服务器&#xff08;准确来说是部署&#xff09;需要买professional。而…

Kubernetes技术--k8s核心技术Controller控制器

1.Controller概述 Controller是在集群上管理和运行容器的对象。是一个实际存在的对象。 2.pod和Controller之间的关系 pod通过controller实现应用的运维,包括伸缩、滚动升级等操作。 这里pod和controller通过label标签来建立关系。如下所示: 3.Deployment控制器应用场景 -1:…