自定义类型:结构体、枚举、联合

目录

结构体

结构体的基础知识

 结构的声明

 特殊的声明

结构体的自引用

结构体变量的定义和初始化

结构体内存对齐

修改默认对齐数

结构体传参

位段

什么是位段

位段的内存分配

位段的跨平台问题

位段的应用

枚举

枚举类型的定义

枚举的优点

联合体(共用体)

联合类型的定义

联合的特点

联合体大小的计算


结构体

结构体的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

 结构的声明

struct tag
{member-list;
}variable-list;

例如,描述一个学生:

struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢

 特殊的声明

在声明结构的时候,可以不完全的声明。比如:

//匿名结构体类型
struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}arr[20],*p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?

//在上面代码的基础上,下面的代码合法吗?

p=&x;

警告:编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。

结构体的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

struct Node
{int data;struct Node next;
};
//可行否?
//如果可以,那sizeof(struct Node)是多少?
//答:不可以

正确的自引用方式:

struct Node
{int data;struct Node* next;
};
typedef struct
{int data;Node* next;
}Node;
//这样写代码不可以!//解决方案
typedef struct Node
{int data;struct Node* next;
}Node;

结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Node
{int data;struct Node* next;
};typedef struct Node
{int data;struct Node* next;
}Node;struct Point
{int x;int y;
}p1;struct Point p2;struct Point p3 = { 1,2 };struct Stu
{char name[15];int age;
};struct Stu s = { "zhangsan",20 };struct Node
{int data;struct Point p;struct Node* next;
}n1 = { 10,{1,2},NULL };//结构体嵌套初始化struct Node n2 = { 20,{5,6},NULL };//结构体嵌套初始化

结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论一个问题:计算结构体的大小。
这也是一个特别热门的考点: 结构体内存对齐

#include <stddef.h>
#include <stdio.h>
struct S1
{char c1;int i;char c2;
};struct S2
{int i;char c1;char c2;
};int main()
{struct S1 s1 = { 0 };//printf("%d\n",sizeof(struct S1));//printf("%d\n", sizeof(struct S2));printf("%d\n",offsetof(struct S1,c1));//可以计算结构体的成员相较于结构体起始位置的偏移量printf("%d\n", offsetof(struct S1, i));printf("%d\n", offsetof(struct S1, c2));return 0;
}

从上面的现象分析,我们发现结构成员不是按照顺序在内存中连续存放的,而是有一定的对齐规则。

结构体内存的对齐规则:

1.结构体的第一个成员永远放在相较于结构体变量起始位置的偏移量为0的位置。

2.从第二个成员开始,往后的每个成员都要对齐到某个对齐数的整数倍处。

对齐数:结构体成员自身的大小和和默认对齐数的较小值。

VS上默认对齐数是8.

gcc没有默认对齐数,对齐数就是结构体成员的自身大小。

3.结构体的总大小,必须是最大对齐数的整数倍。

4.如果嵌套了结构体的情况,嵌套的结构体对齐到自身的最大对齐数的整数倍,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

练习1

struct S1
{char c1;int i;char c2;};
int main()
{printf("%d\n",sizeof(struct S1));return 0;
}

12 

练习2

struct S2
{char c1;char c2;int i;
};
int main()
{printf("%d\n", sizeof(struct S2));return 0;
}

8

练习3

struct S3
{double d;char c;int i;
};
printf("%d\n", sizeof(struct S3))

16

练习4--结构体嵌套问题

struct S3
{double d;char c;int i;
};struct S4
{char c1;struct S3 s3;double d;
};
printf("%d\n", sizeof(struct S4));

32

为什么存在内存对齐?

大部分的参考资料都是如是说的:

1. 平台原因(移植原因):不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

2. 性能原因:数据结构(尤其是栈)应该尽可能地在自然边界上对齐。原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访问。

总体来说:结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到:

让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;char c2;int i;
};

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

修改默认对齐数

 使用预处理指令#pragma,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认#pragma pack(1)//设置默认对齐数位1struct S2
{char c1;int i;char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{printf("%d\n",sizeof(struct S1));printf("%d\n", sizeof(struct S2));return 0;
}

12

6

结论:结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。

结构体传参

直接上代码

struct S
{int data[100];int num;
};//结构体传参
void print1(struct S tmp)
{printf("%d\n",tmp.num);
}
//指针传参
void print2(const struct S* ps)
{printf("%d\n", ps->num);
}int main()
{struct S s = { {1,2,3},100 };print1(s);//传结构体print2(&s);//传指针return 0;
}

上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的下降。

结论:结构体传参的时候,要传结构体的地址。

位段

结构体讲完就得讲讲结构体实现位段的能力。

什么是位段

位段的声明和结构是类似的,有两个不同:

1.位段的成员必须是 int、unsigned int 或signed int 。
2.位段的成员名后边有一个冒号和一个数字。

比如:

struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};

A就是一个位段类型。
那位段A的大小是多少?

8

位段的内存分配

1. 位段的成员可以是int unsigned int signed int 或者是 char(属于整形家族)类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。

struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;return 0;
}

空间是如何开辟的?

位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:跟结构相比,位段可以达到同样的效果,但是可以很好的节省空间,但是有跨平台的问题存在。

位段的应用

枚举

枚举顾名思义就是一一列举。把可能的取值一一列举。比如我们现实生活中:

一周的星期一到星期日是有限的7天,可以一一列举。

性别有:男、女、保密,也可以一一列举。

枚举类型的定义

enum Color//颜色
{RED,//0GREEN,//1BLUE//2
};
enum Sex//性别
{
MALE,
FEMALE,
SECRET
};

以上定义的 enum Day , enum Sex , enum Color 都是枚举类型。
{  }中的内容是枚举类型的可能取值,也叫枚举常量 。
这些可能取值都是有值的,默认从0开始,一次递增1,当然在定义的时候也可以赋初值。

例如:

enum Color//颜色
{RED=1,GREEN=2,BLUE=4
};

枚举的优点

我们可以使用 #define 定义常量,为什么非要使用枚举?
枚举的优点:
1. 增加代码的可读性和可维护性
2. 和#define定义的标识符比较枚举有类型检查,更加严谨。
3. 防止了命名污染(封装)
4. 便于调试
5. 使用方便,一次可以定义多个常量

enum Color
{RED=1,//0GREEN=2,//1BLUE=4//2
};
int main()
{enum Color c = GREEN;c = 5;//errreturn 0;
}

联合体(共用体)

联合类型的定义

联合也是一种特殊的自定义类型,这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。

//联合变量的声明
union Un
{char c;int i;
};
int main()
{//联合变量的定义union Un un;//计算变量的大小printf("%d\n",sizeof(un));return 0;
}

联合的特点

联合的成员是共用同一块内存空间的,这样一个联合变量的大小,至少是最大成员的大小(因为联合至少得有能力保存最大的那个成员)。

union Un
{char c;int i;
};
int main()
{union Un un;printf("%p\n",&(un.i));printf("%p\n",&(un.c));return 0;
}

 

以下代码的输出结果是什么 

union Un un;
un.i = 0x11223344;
un.c = 0x55;
printf("%x\n", un.i);

 11223355

面试题: 

判断当前计算机的大小端存储

int check_sys()
{union{int i;char c;}un = {.i=1};return un.c;
}
int main()
{int ret = check_sys();if (ret == 1)printf("小端\n");elseprintf("大端\n");return 0;
}

联合体大小的计算

联合的大小至少是最大成员的大小。
当最大成员大小不是最大对齐数的整数倍的时候,就要对齐到最大对齐数的整数倍。

union Un1
{char c[5];int i;
};union Un2
{short c[7];int i;
};int main()
{printf("%d\n",sizeof(union Un1));//8printf("%d\n", sizeof(union Un2));//16return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/118942.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CLFS信息泄露漏洞CVE-2023-28266分析

引用 这篇文章的目的是介绍今年4月发布的CLFS信息泄露漏洞CVE-2023-28266分析. 文章目录 引用简介CVE-2023-28266漏洞分析CVE-2023-28266调试过程漏洞复现相关引用参与贡献 简介 文章结合了逆向代码和调试结果分析了CVE-2023-28266漏洞利用过程和漏洞成因. CVE-2023-28266漏洞…

stm32之27.iic协议oled显示

屏幕如果无法点亮&#xff0c;需要用GPIO_OType_PP推挽输出&#xff0c;加并上拉电阻 1.显示字符串代码 2.显示图片代码&#xff08;unsigned强制转换&#xff08;char*&#xff09;&#xff09; 汉字显示

友元(个人学习笔记黑马学习)

1、全局函数做友元 #include <iostream> using namespace std; #include <string>//建筑物类 class Building {//goodGay全局函数是 Building好朋友 可以访问Building中私有成员friend void goodGay(Building* building);public:Building() {m_SittingRoom "…

SpringMVC

学习流程图&#xff1a; 四个学习模块&#xff1a; 1、SpringMVC入门 2、请求与响应 3、rest风格 4、ssm整合 5、拦截器 第一章、SpringMVC入门 1、简介 SpringMVC 是一种基于 Java 的实现 MVC 设计模型的请求驱动类型的轻量级 Web 框架。 SpringMVC的开发步骤&#xff1a; …

vscode调教配置:快捷修复和格式化代码

配置vscode快捷键&#xff0c;让你像使用idea一样使用vscode&#xff0c;我们最常用的两个功能就是格式化代码和快捷修复&#xff0c;所以这里修改一下快捷修复和格式化代码的快捷键。 在设置中&#xff0c;找到快捷键配置&#xff1a; 然后搜索&#xff1a;快捷修复 在快捷键…

即时通讯开发中的性能优化技巧

即时通讯开发在如今的数字化社会中扮演着重要角色&#xff0c;然而&#xff0c;随着用户对即时通讯应用的需求不断增长&#xff0c;开发者们面临着使其应用保持高性能和可靠性的挑战。本文将探讨即时通讯开发中关键的性能优化技巧&#xff0c;帮助开发者们提升应用的用户体验和…

基于Java的OA办公管理系统,Spring Boot框架,vue技术,mysql数据库,前台+后台,完美运行,有一万一千字论文。

基于Java的OA办公管理系统&#xff0c;Spring Boot框架&#xff0c;vue技术&#xff0c;mysql数据库&#xff0c;前台后台&#xff0c;完美运行&#xff0c;有一万一千字论文。 系统中的功能模块主要是实现管理员和员工的管理&#xff1b; 管理员&#xff1a;个人中心、普通员工…

c语言每日一练(13)

前言&#xff1a;每日一练系列&#xff0c;每一期都包含5道选择题&#xff0c;2道编程题&#xff0c;博主会尽可能详细地进行讲解&#xff0c;令初学者也能听的清晰。每日一练系列会持续更新&#xff0c;上学期间将看学业情况更新。 五道选择题&#xff1a; 1、程序运行的结果…

图文详解PhPStudy安装教程

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl 官方下载 请在PhPStudy官方网站下载安装文件&#xff0c;官方链接如下&#xff1a;https://m.xp.cn/linux.html&#xff1b;图示如下&#xff1a; 请下载PhPStudy安装文件…

SpringCloudAlibaba Gateway(一)简单集成

SpringCloudAlibaba Gateway(一)简单集成 随着服务模块的增加&#xff0c;一定会产生多个接口地址&#xff0c;那么客户端调用多个接口只能使用多个地址&#xff0c;维护多个地址是很不方便的&#xff0c;这个时候就需要统一服务地址。同时也可以进行统一认证鉴权的需求。那么服…

golong基础相关操作--一

package main//go语言以包作为管理单位&#xff0c;每个文件必须先声明包 //程序必须有一个main包 // 导入包&#xff0c;必须要要使用 // 变量声明了&#xff0c;必须要使用 import ("fmt" )/* * 包内部的变量 */ var aa 3var ss "kkk"var bb truevar …

使用Python对数据的操作转换

1、列表加值转字典 在Python中&#xff0c;将列表的值转换为字典的键可以使用以下代码&#xff1a; myList ["name", "age", "location"] myDict {k: None for k in myList} print(myDict) 输出&#xff1a; {name: None, age: None, loca…

EasyExcel导出模板实现下拉选(解决下拉超过50个限制)

学习地址&#xff1a;https://d9bp4nr5ye.feishu.cn/wiki/O3obweIbgi2Rk1ksXJncpClTnAfB站视频&#xff1a;https://www.bilibili.com/video/BV1H34y1T7Lm 先来看看最终实现效果&#xff0c;如果效果是你想要的&#xff0c;再看看实现逻辑。 EasyExcel本身是支持设置下拉校验的…

小程序中如何给会员卡设置到期时间

通过设置会员卡到期时间&#xff0c;可以有效地管理会员卡的使用周期&#xff0c;提供更好的会员服务体验。下面将介绍一种常见的给会员卡设置到期时间的方法。 1. 找到指定的会员卡。在管理员后台->会员管理处&#xff0c;找到需要设置到期时间的会员卡。也支持对会员卡按…

OS 内存分区和分页 多级页表与快表

每个进程的PCB都有一个LDT 内存紧缩不实用&#xff0c;所需时间太长 类似于段表&#xff0c;存在页表 但是不连续需要的空间太多了&#xff0c;太麻烦了 多级页表&#xff1a;类比于书的章目录和节目录 构建页目录 每个页目录号指向4M的地址 快表是寄存器&#xff0c;很昂…

《Python入门到精通》webbrowser模块详解,Python webbrowser标准库,Python浏览器控制工具

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 webbrowser模块详解 1、常用操作2、函数大全webbrowser.open() 打开浏览器webbro…

应急三维电子沙盘数字孪生系统

一、简介应急三维电子沙盘数字孪生系统是一种基于虚拟现实技术和数字孪生技术的应急管理工具。它通过将真实世界的地理环境与虚拟世界的模拟环境相结合&#xff0c;实现了对应急场景的模拟、分析和决策支持。该系统主要由三维电子沙盘和数字孪生模型两部分组成。三维电子沙盘是…

机器学习基础16-建立预测模型项目模板

机器学习是一项经验技能&#xff0c;经验越多越好。在项目建立的过程中&#xff0c;实 践是掌握机器学习的最佳手段。在实践过程中&#xff0c;通过实际操作加深对分类和回归问题的每一个步骤的理解&#xff0c;达到学习机器学习的目的 预测模型项目模板 不能只通过阅读来掌握…

YII项目在Docker中运行缓慢

缓慢问题分析 请求YII的api时间请求原生查询时间win10 上运行docker上的php api异常慢ubuntu 中拉代码git报错 请求YII的api时间 请求原生查询时间 win10 上运行docker上的php api异常慢 链接阿里数据的 入口直接返回的 网上有说是docker的dns解析慢&#xff1b; 也有说是…

C语言:大小端字节序存储

一、大小端字节序存储介绍 大端字节序存储模式&#xff1a;把一个数据低位字节处的数据存放在高地址处&#xff0c;数据高位字节处的数据存放在低地址处 小端字节序存储模式&#xff1a;把一个数据低位字节处的数据存放在低地址处&#xff0c;数据高位字节处的数据存放在高地址…