Windows NUMA编程实践 – 处理器组、组亲和性、处理器亲和性及版本变化

Windows在设计之初没有考虑过对大数量的多CPU和NUMA架构的设备的支持,大部分关于CPU的设计按照64个为上限来设计。核心数越来越多的多核处理器的进入市场使得微软不得不做较大的改动来进行支持,因此Windows 的进程、线程和NUMA API在各个版本中行为不一样,新版本逐步引入了新的API,微软官方文档中的介绍较为分散。本文旨在梳理和对比API的变动情况,同时考虑到对主流用户的兼容性,重点介绍使用Win7 API进行开发,并附带介绍Win 10 20385中的行为变化。

注1:以下正文中使用“处理器”、“cpu”、”核”的概念时,如没有特别说明,均是指“逻辑处理器”,即包括超线程核在内的不可再划分的处理器单元。

注2:以下正文中使用“节点”、“node”的概念时,如没有特别说明,均是指“逻辑node”,即包括由于单个物理node上cpu个数超过64而被Windows进一步划分成多个虚拟node的节点。

一、处理器组的概念

逻辑处理器与处理器组的关系

Windows 7开始,当cpu数超过64时windows会将cpu分成处理器组(processor group),一个group最大能有64个cpu(由MAXIMUM_PROCESSORS宏定义),一般会将node内的所有cpu分到同一个group中,一个group也可以包括多个cpu较少的node,但cpu较多的node会被拆成多个虚拟node分别分配给不同group(会导致获取到的最大node数比实际的物理node数多!)。

Figure 1. Scale-up terminology (MoreThan64proc.docx)
Figure 1. Scale-up terminology - MoreThan64proc.docx

逻辑处理器由其组号及其组内编号标识,使用PROCESSOR_NUMBER 结构体表示,处理器亲和性则使用GROUP_AFFINITY结构体表示。例如,对于一个128核,划分为2个group的系统,全局编号为0的逻辑处理器,在组编号下Group = 0, Number = 0;全局编号为65的逻辑处理器,在组编号下为Group = 1, Number = 1。

typedef struct _PROCESSOR_NUMBER {WORD   Group;BYTE  Number;BYTE  Reserved;
} PROCESSOR_NUMBER, *PPROCESSOR_NUMBER;typedef struct _GROUP_AFFINITY {KAFFINITY Mask;WORD   Group;WORD   Reserved[3];
} GROUP_AFFINITY, *PGROUP_AFFINITY;

微软官方提供了一个命令行工具用于查看系统中拓扑和Group信息,
https://learn.microsoft.com/en-us/sysinternals/downloads/coreinfo,在任务管理器-详细信息-设置相关性中也可以看到Group信息。

NUMA节点与处理器组的关系

  • +  一个(逻辑)node必定映射到某个group上
  • +  一个group内可以有一或多个(逻辑)node
  • +  一个(物理)node可能映射到一或多个group上

进程、线程与处理器组的关系

一个线程只能属于一个group,但由于进程内的不同线程可以处于不同group中,所以一个进程可以属于多个group。默认情况下,windows使用轮询算法为新的进程分配一个group,新创建的线程则继承创建它的线程的group,除非显式地指定线程的group亲和性。也就是说,如果程序代码不对设备上的group做识别,只是创建新的线程和使用旧的接口设置处理器亲和性的话,则最大能利用的cpu数只有group内的64个。

二、NUMA API

按照函数名排序

函数描述最低支持版本
AllocateUserPhysicalPagesNuma分配要映射和取消映射的任何 地址窗口扩展 (指定进程的 AWE) 区域中的物理内存页,并为物理内存指定 NUMA 节点。WinVista
CreateFileMappingNuma为指定文件创建或打开命名或未命名的文件映射对象,并为物理内存指定 NUMA 节点。

WinVista

GetLogicalProcessorInformation检索有关逻辑处理器和相关硬件的信息。WinXP(SP3)
GetLogicalProcessorInformationEx检索有关逻辑处理器和相关硬件关系的信息。Win7
GetNumaAvailableMemoryNode检索指定UCHAR节点中的可用内存量。WinXP(SP2)
GetNumaAvailableMemoryNodeEx检索指定USHORT节点中的可用内存量。Win7
GetNumaHighestNodeNumber检索当前具有的最大数目的节点。WinXP(SP2)
GetNumaNodeProcessorMask检索指定UCHAR节点的处理器掩码。WinXP(SP2)
GetNumaNodeProcessorMask2检索指定节点的多组处理器掩码。Win10 20348
GetNumaNodeProcessorMaskEx检索指定为USHORT值的节点的处理器掩码及其所在的group。Win7
GetNumaProcessorNode检索指定处理器的UCHAR节点号。WinXP(SP2)
GetNumaProcessorNodeEx检索指定处理器的USHORT 节点号。Win7
GetNumaProximityNode检索指定邻近度标识符的UCHAR节点号。WinVista
GetNumaProximityNodeEx检索节点号作为指定邻近标识符的USHORT值。Win7
GetProcessDefaultCpuSetMasks检索由 SetProcessDefaultCpuSetMasks 或 SetProcessDefaultCpuSets 设置的进程默认集中 CPU 集的列表。Win10 20348
GetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。Win10 20348
MapViewOfFileExNuma将映射的文件视图映射到调用进程的地址空间,并指定物理内存的 NUMA 节点。WinVista
SetProcessDefaultCpuSetMasks为指定进程中的线程设置默认的 CPU 集分配。Win10 20348
SetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。Win10 20348
VirtualAllocExNuma在指定进程的虚拟地址空间中保留或提交内存区域,并为物理内存指定 NUMA 节点。WinVista

可以发现,和NumaNode有关的函数,在Win7中添加的Ex版本都将Node的类型由UCHAR改为了USHORT以支持更大的node数。

按照最低版本排序

函数描述最低支持版本
GetNumaAvailableMemoryNode检索指定UCHAR节点中的可用内存量。WinXP(SP2)
GetNumaHighestNodeNumber检索当前具有的最大数目的节点。WinXP(SP2)
GetNumaNodeProcessorMask检索指定UCHAR节点的处理器掩码。WinXP(SP2)
GetNumaProcessorNode检索指定处理器的UCHAR节点号。WinXP(SP2)
GetLogicalProcessorInformation检索有关逻辑处理器和相关硬件的信息。WinXP(SP3)
GetNumaProximityNode检索指定邻近度标识符的UCHAR节点号。WinVista
AllocateUserPhysicalPagesNuma分配要映射和取消映射的任何 地址窗口扩展 (指定进程的 AWE) 区域中的物理内存页,并为物理内存指定 NUMA 节点。WinVista
CreateFileMappingNuma为指定文件创建或打开命名或未命名的文件映射对象,并为物理内存指定 NUMA 节点。WinVista
MapViewOfFileExNuma将映射的文件视图映射到调用进程的地址空间,并指定物理内存的 NUMA 节点。WinVista
VirtualAllocExNuma在指定进程的虚拟地址空间中保留或提交内存区域,并为物理内存指定 NUMA 节点。WinVista
GetLogicalProcessorInformationEx检索有关逻辑处理器和相关硬件关系的信息。Win7
GetNumaAvailableMemoryNodeEx检索指定USHORT节点中的可用内存量。Win7
GetNumaNodeProcessorMaskEx检索指定为USHORT值的节点的处理器掩码及其所在的group。Win7
GetNumaProcessorNodeEx检索指定处理器的USHORT 节点号。Win7
GetNumaProximityNodeEx检索节点号作为指定邻近标识符的USHORT值。Win7
GetProcessDefaultCpuSetMasks检索由 SetProcessDefaultCpuSetMasks 或 SetProcessDefaultCpuSets 设置的进程默认集中 CPU 集的列表。Win10 20348
GetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。Win10 20348
SetProcessDefaultCpuSetMasks为指定进程中的线程设置默认的 CPU 集分配。Win10 20348
SetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。Win10 20348
GetNumaNodeProcessorMask2检索指定节点的多组处理器掩码。Win10 20348

三、进程、线程API

函数描述最低版本
GetProcessAffinityMask检索指定进程的进程关联掩码和系统的系统关联掩码。WinXP
SetProcessAffinityMask为指定进程的线程设置处理器关联掩码。WinXP
SetThreadAffinityMask为指定线程设置处理器关联掩码。WinXP
GetProcessGroupAffinity检索指定进程的处理器组相关性。Win7
GetThreadGroupAffinity检索指定线程的处理器组相关性。Win7
SetThreadGroupAffinity设置指定线程的处理器组相关性。Win7
SetThreadIdealProcessor设置线程的首选处理器。 系统尽可能在其首选处理器上计划线程。WinXP
SetThreadIdealProcessorEx设置指定线程的首选处理器,并选择性地检索上一个首选处理器。Win7
CreateRemoteThreadEx创建线程。Win7
GetActiveProcessorCount返回处理器组或系统中的活动处理器数。Win7
GetActiveProcessorGroupCount返回系统中活动处理器组的数目。Win7
GetCurrentProcessorNumber检索调用此函数时当前线程运行所在的处理器号。WinVista
GetCurrentProcessorNumberEx检索调用此函数时当前线程运行所在的处理器组和编号。Win7

Win7 引入的另一个变化是,SetThreadAffinityMask 和 SetThreadGroupAffinity 现在允许传入的Mask参数为0,代表使用组内的所有CPU。

四、受处理器分组影响的API

只有在系统中处理器数大于64时才会发生分组,否则系统中只有一个group 0,现有的函数在行为上没有变化。

函数描述影响
GetLogicalProcessorInformation检索有关逻辑处理器和相关硬件的信息。改动较多,参阅官方文档。主要变化是只能获取当前group中的处理器信息。
GetLogicalProcessorInformationEx检索有关逻辑处理器和相关硬件关系的信息。Win7新增。参阅官方文档。能够获取所有组的处理器信息。
GetNumaHighestNodeNumber检索当前具有的最大数目的节点。返回的node数可能大于真实的物理node数。
GetNumaNodeProcessorMask检索指定UCHAR节点的处理器掩码。如果调用线程与指定的node不在同一group内,返回的处理器掩码为0。
GetNumaNodeProcessorMaskEx检索指定为USHORT值的节点的处理器掩码及其所在的group。Win7新增。可以不考虑线程所在group,检索任意node。
GetNumaProcessorNode检索指定处理器的UCHAR节点号。传入的Processor参数变成组内编号。
GetNumaProcessorNodeEx检索指定处理器的USHORT 节点号。Win7新增。传入的Processor参数类型为PPROCESSOR_NUMBER。
   
GetProcessAffinityMask检索指定进程的进程关联掩码和系统的系统关联掩码。返回的是组内掩码,如果进程处于多个group,则返回的掩码都为0。
SetProcessAffinityMask为指定进程的线程设置处理器关联掩码。传入的参数变为组内掩码;如果进程处于多个group,则返回值为0。
SetThreadAffinityMask为指定线程设置处理器关联掩码。传入的参数变为组内掩码。
GetProcessGroupAffinity检索指定进程的处理器组相关性。Win7新增。
GetThreadGroupAffinity检索指定线程的处理器组相关性。Win7新增。
SetThreadGroupAffinity设置指定线程的处理器组相关性。Win7新增。
SetThreadIdealProcessor设置线程的首选处理器。 系统尽可能在其首选处理器上计划线程。传入参数变为组内编号。
SetThreadIdealProcessorEx设置指定线程的首选处理器,并选择性地检索上一个首选处理器。Win7新增。传入的参数类型为PPROCESSOR_NUMBER。
   
CreateRemoteThreadEx创建线程。Win7新增。允许用户在创建时指定线程的组亲和性。
GetCurrentProcessorNumber检索调用此函数时当前线程运行所在的处理器号。返回值变为组内编号。
GetCurrentProcessorNumberEx检索调用此函数时当前线程运行所在的处理器组和编号。Win7新增。返回的参数类型为PPROCESSOR_NUMBER。
GetSystemInfo检索有关当前系统的信息。返回的 NumberOfProcessorsActiveProcessorsAffinityMask 变为组内处理器信息。

总结一下,对于不识别group的现有函数,在引入group后其使用的处理器编号参数的含义变为组内编号,返回的处理器信息只有组内处理器信息

五、内存绑定策略

Linux下的libnuma提供了独立的线程绑定策略和内存绑定策略,这给予了开发者将线程固定在某个cpu/node上运行的同时却能够在任意node上进行内存分配的灵活性。很可惜,Windows不提供这样的灵活性,没有独立的内存绑定策略,其默认的NUMA内存策略只有一种:在当前执行线程所在的node上进行内存分配,内存不足时到临近节点上分配。意味着我们在做NUMA内存管理时,只能在进行内存分配前,将当前线程切换到指定的cpu/node上运行。

虽然没有提供内存绑定策略这样灵活的机制,但是使用VirtualAllocExNuma函数依然可以在不改变处理器亲和性的情况下在任意的node上进行内存分配,但不方便的地方就是需要自己做内存页管理。具体请参考官方示例:从 NUMA 节点分配内存 - Win32 apps | Microsoft Learn

六、NUMA开发实例

如文章开头提到的,我们重点使用Win7提供的API,以下实例旨在提供一种类似于Linux上的全局逻辑处理器号的开发体验,让实际开发中不需要使用到group号+组内编号这样别扭的形式。

#include <iostream>
#include <string>
#include <windows.h>int max_group = 0;
int max_node = 0;
int max_cpu = 0;// 初始化
void NumaInitMaxCounts() {WORD group;ULONG node;// 获取最大的NUMA节点号GetNumaHighestNodeNumber(&node);			// start from 0max_node = node + 1;// 获取系统中的processor group和总的cpu个数max_group = GetActiveProcessorGroupCount();for (group = 0; group < max_group; group++) {max_cpu += GetActiveProcessorCount(group);		// 将所有group的cpu个数累加}
}// 将全局cpu号转换为组内编号
int NumaGetProcessorGroup(int cpu, _Out_ PROCESSOR_NUMBER *proc_num) {WORD group;int count;if (cpu < 0 || cpu >= max_cpu) {printf("NumaGetProcessorGroup: Invalid cpu %d", cpu);return -1;}for (group = 0; group < max_group; group++) {count = GetActiveProcessorCount(group);if (count - cpu - 1 >= 0) {proc_num->Group = group;proc_num->Number = cpu;return 0;}elsecpu -= count;}// should not reach herereturn -2;
}// 获取全局cpu号所在的node号
int NumaGetProcessorNode(int cpu) {BOOL bret;USHORT node;PROCESSOR_NUMBER proc_num = {};if (cpu < 0 || cpu >= max_cpu) {printf("NumaGetProcessorNode: Invalid cpu %d", cpu);return -1;}// 首先获取cpu组内编号if (NumaGetProcessorGroup(cpu, &proc_num) != 0)return -2;// 获取node号bret = GetNumaProcessorNodeEx(&proc_num, &node);if (!bret)return -2;return node;
}// 绑定线程到node上运行、分配内存
int NumaBindNode(USHORT node) {GROUP_AFFINITY gaffinity;GROUP_AFFINITY prev_gaffinity;BOOL bret;if (node >= max_node) {printf("NumaBindNode: Invalid node %u", node);return -1;}// 获取node下的所有cpu maskbret = GetNumaNodeProcessorMaskEx(node, &gaffinity);if (!bret)return -2;// 设置当前线程组CPU亲和性bret = SetThreadGroupAffinity(GetCurrentThread(), &gaffinity, &prev_gaffinity);if (!bret)return -2;return 0;
}// 绑定线程到cpu(全局cpu号)上运行、分配内存
int NumaBindProcessor(int cpu) {BOOL bret;int ret;PROCESSOR_NUMBER proc_num = {};GROUP_AFFINITY gaffinity = {};GROUP_AFFINITY prev_gaffinity = {};if (cpu < 0 || cpu >= max_cpu) {printf("NumaBindProcessor: Invalid cpu %d", cpu);return -1;}// 首先获取cpu组内编号ret = NumaGetProcessorGroup(cpu, &proc_num);if (ret < 0)return ret;gaffinity.Group = proc_num.Group;gaffinity.Mask = 1LL << proc_num.Number;// 设置当前线程组CPU亲和性bret = SetThreadGroupAffinity(GetCurrentThread(), &gaffinity, &prev_gaffinity);if (!bret)return -2;return 0;
}

上述实例中提供了两种使用方式,一种是基于全局逻辑处理器号NumaBindProcessor(),以及基于node号的NumaBindNode()。

尽管(逻辑)node和group不是一种从属的关系,而是一种单映射关系(一个node对应于一个group,反之不然),但是node下的cpu是从属于某个group下的,这一点从GetNumaNodeProcessorMaskEx()返回的Mask中带有Group号可以看到,因此我们还是应当使用识别group的API来设置进程、线程亲和性。

七、从 Windows 10 内部版本 20348 开始的行为

没错,又变了!(-_-||)但幸好影响到的现有API只有4个。

Win 10 Build 20348,这个版本并没有发布给普通的Win 10用户,它与Windows Server 2022发布版本的版本号一致,在Windows SDK页面上也注明了该版本主要用于Server开发的用途,新增的API函数参考页面则直接注明最低支持版本为Win 11。所以,如果使用该API开发的话,基本上等同于目标群体为Win 11/Win Server 2022用户。

从 Windows 10 内部版本 20348 (部分文档中称为Iron Build)开始,为更好地支持包含 64 个以上处理器的NUMA系统,部分NUMA及相关函数的行为发生了变动。

创建“假”节点以适应组和节点之间的 1:1 映射的关系会导致出现混淆行为,即报告的 NUMA 节点数与物理节点数不符,因此,从 Windows 10 Build 20348 开始,OS 行为已做更改,停止创建"假"节点并允许多个组与一个node相关联,因此现在可以报告系统的真实 NUMA 拓扑。

作为 OS 的这些更改的一部分,许多 NUMA API 已更改,以支持报告node上的多个组。同时为兼容旧API,系统默认为每个节点分配一个主组

由于删除节点拆分可能会影响现有应用程序,因此允许使用注册表值来选择重新启用旧的节点拆分行为。 可以通过在HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\NUMA下创建名为“SplitLargeNodes”的 REG_DWORD 值来重新启用节点拆分。 对此设置的更改需要重启才会生效。

reg add "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\NUMA" /v SplitLargeNodes /t REG_DWORD /d 1

从 Windows 11 和 Windows Server 2022 开始,在具有 64 个以上的处理器的设备上,进程和线程的相关性默认情况下将包括所有处理器组中的所有处理器。

新增及改动的API

函数描述影响
GetLogicalProcessorInformation检索有关逻辑处理器和相关硬件的信息。RelationNumaNode 返回的是调用线程所在group的信息。
GetLogicalProcessorInformationEx检索有关逻辑处理器和相关硬件关系的信息。RelationNumaNode 返回的是node所对应主group的信息,GroupCount的值为1。新增RelationNumaNodeEx。
GetNumaNodeProcessorMask检索指定UCHAR节点的处理器掩码。只返回node所对应主group的信息,并且仅在调用线程属于该group时返回。
GetNumaNodeProcessorMaskEx检索指定为USHORT值的节点的处理器掩码及其所在的group。只返回node所对应主group的信息。
GetProcessDefaultCpuSetMasks检索由 SetProcessDefaultCpuSetMasks 或 SetProcessDefaultCpuSets 设置的进程默认集中 CPU 集的列表。新增。
GetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。新增。
SetProcessDefaultCpuSetMasks为指定进程中的线程设置默认的 CPU 集分配。新增。
SetThreadSelectedCpuSetMasks设置指定线程的所选 CPU 集分配。 如果设置了此分配,则此分配将替代进程默认分配。新增。
GetNumaNodeProcessorMask2检索指定节点的多组处理器掩码新增。

为了适应新的行为,建议新的代码都使用GetNumaNodeProcessorMask2。

八、进程、线程对亲和性的继承

Linux下将线程作为调度的单元,不区分进程和线程,新的线程/进程直接继承创建它的线程的处理器亲和性和内存策略。但是Windows下区分进程和线程,Mask和Group又拥有不同的继承策略:

进程线程
Mask新进程默认继承父进程的掩码新线程默认继承进程(process)的掩码
Group新进程由OS以轮转方式分配一个Group新线程默认继承创建它的线程(thread)的Group

如果需要在创建时指定亲和性,可以使用:

CreateRemoteThreadEx() + PROC_THREAD_ATTRIBUTE_GROUP_AFFINITY

CreateProcess() + INHERIT_PARENT_AFFINITY,注意如果父进程属于多个group,则从中随机选取一个分配给新进程。

参考:

> Process Creation Flags (WinBase.h) - Win32 apps | Microsoft Learn

> MoreThan64proc.docx "Group, Process, and Thread Affinity" 小节

验证线程对Mask的继承:

#include <iostream>
#include <string>
#include <windows.h>DWORD __stdcall func2(LPVOID arg) {BOOL bret;GROUP_AFFINITY gaffinity = {};GROUP_AFFINITY prev_gaffinity = {};PROCESSOR_NUMBER proc_num = {};bret = GetThreadGroupAffinity(GetCurrentThread(), &gaffinity);printf("ret = %d, Thread 2 ThreadGroupAffinity Group = %u, Mask = %llu\n", bret, gaffinity.Group, gaffinity.Mask);GetCurrentProcessorNumberEx(&proc_num);printf("Thread 2 CurrentProcessorGroup = %u, CurrentProcessorNum = %u\n", proc_num.Group, proc_num.Number);Sleep(100);return 0;
}DWORD __stdcall func1(LPVOID arg) {BOOL bret;GROUP_AFFINITY gaffinity = {};GROUP_AFFINITY prev_gaffinity = {};gaffinity.Group = 0;gaffinity.Mask = 1;		// 设置线程1 使用 CPU 0bret = SetThreadGroupAffinity(GetCurrentThread(), &gaffinity, &prev_gaffinity);printf("ret = %d, Thread 1 prev ThreadGroupAffinity Group = %u, Mask = %llu\n", bret, prev_gaffinity.Group, prev_gaffinity.Mask);bret = GetThreadGroupAffinity(GetCurrentThread(), &gaffinity);printf("ret = %d, Thread 1 new ThreadGroupAffinity Group = %u, Mask = %llu\n", bret, gaffinity.Group, gaffinity.Mask);// 创建线程2CreateThread(NULL, 4096, func2, NULL, 0, NULL);Sleep(500);return 0;
}int main() {BOOL bret;PROCESSOR_NUMBER proc_num = {};GROUP_AFFINITY gaffinity = {};DWORD_PTR mask;DWORD_PTR sysmask;// 设置process Mask为 CPU 0~3mask = pow(2, 4) - 1;SetProcessAffinityMask(GetCurrentProcess(), mask);bret = GetProcessAffinityMask(GetCurrentProcess(), &mask, &sysmask);printf("ret = %d, ProcessAffinityMask = %llu, SystemMask = %llu\n", bret, mask, sysmask);// 设置process Mask为 CPU 0 + CPU 1gaffinity.Group = 0;gaffinity.Mask = mask = pow(2, 2) - 1;bret = SetThreadGroupAffinity(GetCurrentThread(), &gaffinity, nullptr);bret = GetThreadGroupAffinity(GetCurrentThread(), &gaffinity);printf("ret = %d, Main ThreadGroupAffinity Group = %u, Mask = %llu\n", bret, gaffinity.Group, gaffinity.Mask);CreateThread(NULL, 4096, func1, NULL, 0, NULL);Sleep(1000);return 0;
}

在我的有4个处理器设备上运行的结果如下:

ret = 1, ProcessAffinityMask = 15, SystemMask = 15
ret = 1, Main ThreadGroupAffinity Group = 0, Mask = 3
ret = 1, Thread 1 prev ThreadGroupAffinity Group = 0, Mask = 15
ret = 1, Thread 1 new ThreadGroupAffinity Group = 0, Mask = 1
ret = 1, Thread 2 ThreadGroupAffinity Group = 0, Mask = 15
Thread 2 CurrentProcessorGroup = 0, CurrentProcessorNum = 1

九、总结

1. 自Win7引入处理器组开始,原有的不识别group的函数,参数和返回值都变成组内编号/信息。

2. 自Win10 20348 由于node可以关联多个group,引入“主组”之后,原有的node相关不支持多个group的函数,参数和返回值都变成主组信息。

参考资料

NUMA 支持 - Win32 apps | Microsoft Learn

处理器组 - Win32 apps | Microsoft Learn

What's New in Processes and Threads - Win32 apps | Microsoft Learn

download.microsoft.com/download/a/d/f/adf1347d-08dc-41a4-9084-623b1194d4b2/

MoreThan64proc.docx
White Paper "Supporting Systems That Have More Than 64 Processors"   介绍处理器组最全面的文档!

从 NUMA 节点分配内存 - Win32 apps | Microsoft Learn

Windows SDK and emulator archive | Microsoft Developer

Windows Server 2022 Now Generally Available - Microsoft Community Hub

Coreinfo - Sysinternals | Microsoft Learnhhansh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/119466.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java+SpringBoot+Vue前后端分离大学生智能消费记账系统设计和实现

博主介绍&#xff1a;✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专…

国产10米分辨率的卫星介绍、下载和处理教程

10米分辨率的资源卫星介绍、下载和处理教程 简介 说起免费的10米分辨率卫星影像,大家首先想到的是sentinel卫星。但其实还有我国的中巴地球资源卫星04星(CBERS04)。 中巴地球资源卫星(China Brazil Earth Resources Satellite, CBERS)是中国和巴西共同投资、联合研制的地球…

PCIe DL_Feature详解

DL_Feature的引入 Data Link Control and Management State Machine在PCIe Gen4引入了DL_Feature这个状态&#xff0c;该状态主要用来协商PCIe link 两端是否支持新的DL Feature&#xff0c;目前为止DL Feature只引入了Scaled Flow Control 来提高Gen4及以上的效率。   DL_Fe…

qt信号与槽

输入账户密码成功则跳转界面 widget.cpp #include "widget.h" //自己的头文件Widget::Widget(QWidget *parent) //构造函数的定义: QWidget(parent) …

自建音乐服务器Navidrome之一

这里写自定义目录标题 1.1 官方网站 2. Navidrome 简介2.1 简介2.2 特性 3. 准备工作4. 视频教程5. 界面演示5.1 初始化页5.2 专辑页 前言 之前给大家介绍过 Koel 音频流服务&#xff0c;就是为了解决大家的这个问题&#xff1a;下载下来的音乐&#xff0c;只能在本机欣赏&…

纽扣电池/锂电池UN38.3安全检测报告

根据规章要求&#xff0c;航空公司和机场货物收运部门应对锂电池进行运输文件审查&#xff0c;重要的是每种型号的锂电池UN38.3安全检测报告。该报告可由的三方检测机构。如不能提供此项检测报告&#xff0c;将禁止锂电池进行航空运输. UN38.3包含产品&#xff1a;1、 锂电池2…

Typora导出的PDF目录标题自动加编号

Typora导出的PDF目录标题自动加编号 在Typora主题文件夹增加如下文件后&#xff0c;标题便自动加上了编号&#xff1a; https://gitcode.net/as604049322/blog_data/-/blob/master/base.user.css 例如&#xff1a; 但是导出的PDF中&#xff0c;目录却没有编号&#xff1a; 这…

qt day 5

1>实现闹钟功能 ---------------------------------------------------------------------- .pro ---------------------------------------------------------------------- QT core gui texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# T…

CEF内核和高级爬虫知识

(转)关于MFC中如何使用CEF内核&#xff08;CEF初解析&#xff09; Python GUI: cefpython3的简单分析和应用 cefpython3&#xff1a;一款强大的Python库 开始大多数抓取尝试可以从几乎一行代码开始&#xff1a; fun main() PulsarContexts.createSession().scrapeOutPages(&q…

【项目源码】一套基于springboot+Uniapp框架开发的智慧医院3D人体导诊系统源码

智慧医院3D人体导诊系统源码 开发语言&#xff1a;java 开发工具&#xff1a;IDEA 前端框架&#xff1a;Uniapp 后端框架&#xff1a;springboot 数 据 库&#xff1a;mysql 移 动 端&#xff1a;微信小程序、H5 “智慧导诊”以人工智能手段为依托&#xff0c;为…

JVM介绍

一、介绍 1. JVM是什么 JVM是Java Virtual Machine的缩写&#xff0c;即咱们经常提到的Java虚拟机。虚拟机是一种抽象化的计算机&#xff0c;有着自己完善的硬件架构&#xff0c;如处理器、堆栈等&#xff0c;具体有什么咱们不做了解。目前我们只需要知道想要运行Java文件&…

基于Matlab实现生活中的图像信号分类(附上源码+数据集)

在我们的日常生活中&#xff0c;我们经常会遇到各种各样的图像信号&#xff0c;例如照片、视频、图标等等。对这些图像信号进行分类和识别对于我们来说是非常有用的。在本文中&#xff0c;我将介绍如何使用Matlab来实现生活中的图像信号分类。 文章目录 介绍源码数据集下载 介…

Pinely Round 2 (Div. 1 + Div. 2) G. Swaps(组合计数)

题目 给定一个长度为n(n<1e6)的序列&#xff0c;第i个数ai(1<ai<n)&#xff0c; 操作&#xff1a;你可以将当前i位置的数和a[i]位置的数交换 交换可以操作任意次&#xff0c;求所有本质不同的数组的数量&#xff0c;答案对1e97取模 思路来源 力扣群 潼神 心得 感…

科创板50ETF期权交易:详细规则、费用、保证金和开户攻略

科创板50ETF期权是指以科创板50ETF为标的资产的期权合约。科创板50ETF是由交易所推出的一种交易型开放式指数基金&#xff08;ETF&#xff09;&#xff0c;旨在跟踪科创板50指数的表现&#xff0c;下文介绍科创板50ETF期权交易&#xff1a;详细规则、费用、保证金和开户攻略&am…

2022年09月 C/C++(六级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C++编程(1~8级)全部真题・点这里 第1题:stack or queue 栈和队列都是常用的线性结构,它们都提供两个操作: Push:加入一个元素。 Pop:弹出一个元素。 不同的是,栈是”先进后出”,而队列则是”先进先出”。 给出一个线性结构的进出顺序,判定这个结构是栈还是队列。 时…

RT-Thread I/O设备模型(一)

I/O设备模型 绝大部分的嵌入式系统都包括一些I/O&#xff08;Input/Output&#xff0c;输入/输出&#xff09;设备&#xff0c;例如仪器上的数据显示屏&#xff0c;工业设备上的串口通信、数据采集设备上用于保存数据的 Flash 或 SD 卡&#xff0c;以及网络设备的以太网接口等…

Mapbox-gl 关闭所有Popup,以及关闭按钮出现黑色边框bug

1.官方示例 var popup new mapboxgl.Popup().addTo(map);popup.remove(); 很明显&#xff0c;需要记录popup对象&#xff0c;管理起来比较麻烦。 2.本人采用div的方式关闭所有的popup&#xff0c;在map对象上新增加方法 map.closePopupmapView.popupClear function(){$(&q…

ELK安装、部署、调试(三)zookeeper安装,配置

1.准备 java安装&#xff0c;系统自带即可 2.下载zookeeper zookeeper.apache.org上可以下载 tar -zxvf apache-zookeeper-3.7.1-bin.tar.gz -C /usr/local mv apache-zookeeper-3.7.1-bin zookeeper 3.配置zookeeper mv zoo_sample.cfg zoo.cfg /usr/local/zookeeper/con…

3D视觉测量:面对面的对称度 点对(附源码)

文章目录 0. 测试效果1. 基本内容2. 3D视觉测量对称度测量思路3. 代码实现4. 参考文章目录:3D视觉测量目录微信:dhlddxB站: Non-Stop_目标:通过3D视觉方法计算面对面的对称度0. 测试效果 数据说明:此测试点云是通过UG建模,Meshlab降采样得到,数据比较理想,仅作为测试使用…

【人工智能】—_一阶逻辑、量词的推理规则、一般化分离规则、合一、前向_反向链接算法、归结算法

文章目录 量词的推理规则全称量词实例化存在量词实例化 简化到命题逻辑推理Generalized Modus Ponens&#xff08;一般化分离规则&#xff09;举例 合一Forward chaining 前向链接算法示例 Backward chaining algorithm 反向链接算法一般FOL的FC/BC的完整性 归结算法归结推理规…