ARM编程模型-寄存器组

Cortex A系列ARM处理器共有40个32位寄存器,其中33个为通用寄存器,7个为状态寄存器。usr模式和sys模式共用同一组寄存器。
在这里插入图片描述
通用寄存器包括R0~R15,可以分为3类:

  1. 未分组寄存器R0~R7
  2. 分组寄存器R8~R14、R13(SP) 、R14(LR)
  3. 程序计数器PC(R15)、R8_fiq-R12_fir为快中断独有
    在这里插入图片描述
    在这里插入图片描述
    在不同模式下,名称相同的寄存器,实际物理上是不同的寄存器,虽然逻辑上有可能相同。
    r0~r7 所有模式下都是相同的寄存器

1.ARM的寄存器组(Thumb state)

在这里插入图片描述

2. 不同状态下的寄存器组对比

在这里插入图片描述

3.通用寄存器

通用寄存器包括R0~R15,可以分为3类:

  1. 未分组寄存器R0~R7
  2. 分组寄存器R8~R14、R13(SP) 、R14(LR)
  3. 程序计数器PC(R15)、R8_fiq-R12_fir为快中断独有

R0-R7:无影子寄存器,未分组寄存器
所有模式下,R0-R7所对应的物理寄存器都是相同的。
真正意义上的通用寄存器,ARM体系结构种对他们没有任何特殊的假设,它们的功能都是等同的。
在所有运行模式下,未分组寄存器都指向同一个物理寄存器,它们未被系统用作特殊的用途.因此在中断或异常处理进行运行模式转换时,由于不同的处理器运行模式均使用相同的物理寄存器,所以可能造成寄存器中数据的破坏。
因此,在中断或者异常处理程序中一般都需要对这几个寄存器进行保存。压栈保存。

R8-R14:有影子寄存器,分组寄存器
影子寄存器是指该寄存器在不同模式下对应的物理寄存器。
对于分组寄存器,它们每一次所访问的物理寄存器都与当前处理器的运行模式有关。
访问的物理寄存器取决于当前的处理器模式,或使用规定的名字来访问。
R8-R12各有2个物理寄存器:FIQ模式和非FIQ模式。除了FIQ模式下不用保存R8-R12,其他模式都需要保护。每个寄存器对应2个不同的物理寄存器,当使用FIQ(快速中断模式)时,访问寄存器 R8_fiq ~ R12_fiq;当使用除FIQ模式以外的其他模式时,访问寄存器R8_usr~R12_usr。。

R13-R14
各有6个物理寄存器,用户模式和系统模式共用,其他5个用于各异常模式。
对于R13,R14来说,每个寄存器对应7个不同的物理寄存器,其中一个是用户模式与系统模式共用,另外6个物理寄存器对应其他6种不同的运行模式,并采用以下记号来区分不同的物理寄存器:
R13_mode R14_mode
其中mode可为:「usr,fiq,irq,svc,abt,und,mon」。

R13(SP)被用作栈指针
通常在系统初始化时需要对所有模式下的SP指针赋值,CPU会自动切换成相应模式下的值。
在ARM指令中常用作「堆栈指针」,用户也可使用其他的寄存器作为堆栈指针,而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
寄存器R13在ARM指令中常用作堆栈指针,但这只是一种习惯用法,用户也可使用其他的寄存器作为堆栈指针。而在Thumb指令集中,某些指令强制性的要求使用R13作为堆栈指针。
由于处理器的每种运行模式均有自己独立的物理寄存器R13,在用户应用程序的初始化部分,一般都要初始化每种模式下的R13,使其指向该运行模式的栈空间。这样,当程序的运行进入异常模式时,可以将需要保护的寄存器放入R13所指向的堆栈,而当程序从异常模式返回时,则从对应的堆栈中恢复,采用这种方式可以保证异常发生后程序的正常执行。

R14(LR)链接寄存器(Link Register)
用于保存子程序返回地址或异常返回地址。
当执行子程序调用指令(BL)时,R14可得到R15(程序计数器PC)的备份。
在每一种运行模式下,都可用R14保存子程序的返回地址,当用BL或BLX指令调用子程序时,将PC的当前值复制给R14,执行完子程序后,又将R14的值复制回PC,即可完成子程序的调用返回。以上的描述可用指令完成。
从子程序返回:
MOV PC, LR
或者
BX LR

在子程序入口处使用以下指令将R14存入堆栈:
STMFD SP!,{,LR}

对应的,使用以下指令可以完成子程序返回:
LDMFD SP!,{,PC}

R15(PC):程序计数器
可以被读写
ARM STATE:bits[1:0]为0,bits[31:2]即为PC有效值
THUMB state: bits[0]为0, bits[31:1]即为PC有效值
比如如果pc的值是0x40008001,那么在寻址的时候其实会查找地址0x40008000,低2位会自动忽略掉
由于ARM体系结构采用了多级流水线技术,对于ARM指令集而言,PC总是指向当前指令的下两条指令的地址,即PC的值为当前指令的地址值加8个字节。
即:PC值=当前程序执行位置+8

4. 程序状态寄存器(v4T)CPSR、SPSR

包括所有的CPSR和SPSR寄存器,其中CPSR(当前状态寄存器)在所有模式下都是可以读写的。SPSR是CPSR的备份。二者格式相同。
「CPSR」(Current Program Status Register,当前程序状态寄存器),CPSR可在任何运行模式下被访问,它包括条件标志位、中断禁止位、当前处理器模式标志位,以及其他一些相关的控制和状态位。
每一种运行模式下又都有一个专用的物理状态寄存器,称为「SPSR」(Saved Program Status Register,备份的程序状态寄存器),当异常发生时,SPSR用于保存CPSR的当前值,从异常退出时则可由SPSR来恢复CPSR。
由于用户模式和系统模式不属于异常模式,它们没有SPSR,当在这两种模式下访问SPSR,结果是未知的。
条件标准,中断使能标志,当前处理器的模式,其它的一些状态和控制标志
在这里插入图片描述
a. 条件码标志(condition code flags)「N,Z,C,V」均为条件码标志位,它们的内容可被算术或逻辑运算的结果所改变,并且可以决定某条指令是否被执行。在ARM状态下,绝大多数的指令都是有条件执行的,在Thumb状态下,仅有分支指令是有条件执行的。
「N (Number)」: 当用两个补码表示的带符号数进行运算时,N=1表示运行结果为负,N=0表示运行结果为正或零
「Z :(Zero)」: Z=1表示运算结果为零,Z=0表示运行结果非零
「C」 : 可以有4种方法设置C的值:
o (Come)加法运算(包括CMP):当运算结果产生了进位时C=1,否则C=0
o 减法运算(包括CMP):当运算产生了借位,C=0否则C=1
o 对于包含移位操作的非加/减运算指令 ,C为移出值的最后一位
o 对于其他的非加/减运算指令C的值通常不改变
「V」 :
(oVerflow)对于加/减法运算指令,当操作数和运算结果为二进制的补码表示的带符号位溢出时,V=1表示符号位溢出;对于其他的非加/减运算指令V的值通常不改变
「Q」:在ARM V5及以上版本的E系列处理器中,用Q标志位指示增强的DSP运算指令是否发生了溢出。在其它版本的处理器中,Q标志位无定义
「J:」
仅ARM v5TE-J架构支持 , T=0;J = 1 处理器处于Jazelle状态,也可以和其他位组合.
「E位:」大小端控制位
「A位:」A=1 禁止不精确的数据异常
「T :」T = 0;J=0; 处理器处于 ARM 状态 T = 1;J=0 处理器处于 Thumb 状态 T = 1;J=1 处理器处于 ThumbEE 状态

b. 控制位 CPSR的低8位(包括I,F,T和M[4:0])称为控制位,当发生异常时这些位可以被改变,如果处理器运行特权模式,这些位也可以由程序修改。
「中断禁止位I,F」【重要】 I=1 禁止IRQ中断 F=1 禁止FIQ中断
比如我们要想在程序中实现禁止中断,那么就需要将CPSR[7]置1。

c.模式控制位的值和相关寄存器列表
在这里插入图片描述
注意观察这5个bit的特点,最高位都是1,低4位的值则各不相同,这个很重要,要想搞清楚uboot、linux的源码,尤其是异常操作的代码,必须要知道这几个bit的值。

程序状态寄存器(v5及v6新增标志位)
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/120091.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

centos中得一些命令 记录

redis命令 链接redis数据库的命令 redis-cli如果 Redis 服务器在不同的主机或端口上运行&#xff0c;你需要提供相应的主机和端口信息。例如&#xff1a; redis-cli -h <hostname> -p <port>连接成功后&#xff0c;你将看到一个类似于以下的提示符&#xff0c;表…

手写Mybatis:第12章-完善ORM框架,增删改查操作

文章目录 一、目标&#xff1a;完善增删改查二、设计&#xff1a;完善增删改查三、实现&#xff1a;完善增删改查3.1 工程结构3.2 完善增删改查类图3.3 扩展解析元素3.4 新增执行方法3.4.1 执行器接口添加update3.4.2 执行器抽象基类3.4.3 简单执行器 3.5 语句处理器实现3.5.1 …

【Eclipse】Project interpreter not specified 新建项目时,错误提示,已解决

目录 0.环境 1&#xff09;问题截图&#xff1a; 2&#xff09;错误发生原因&#xff1a; 1.解决思路 2.具体步骤 0.环境 windows 11 64位&#xff0c;Eclipse 2021-06 1&#xff09;问题截图&#xff1a; 2&#xff09;错误发生原因&#xff1a; 由于我手欠&#xff0c;将…

YOLOV8实例分割——详细记录环境配置、自定义数据处理到模型训练与部署

前言 Ultralytics YOLOv8是一种前沿的、最先进的&#xff08;SOTA&#xff09;模型&#xff0c;它在前代YOLO版本的成功基础上进行了进一步的创新&#xff0c;引入了全新的特性和改进&#xff0c;以进一步提升性能和灵活性。作为一个高速、精准且易于操作的设计&#xff0c;YO…

搭建个人hMailServer 邮件服务实现远程发送邮件

文章目录 1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpolar内网映射工…

拓扑排序算法 -- dfs、bfs

210. 课程表 II 该题用到「拓扑排序」的算法思想&#xff0c;关于拓扑排序&#xff0c;直观地说就是&#xff0c;让你把⼀幅图「拉平」&#xff0c;⽽且这个「拉平」的图⾥⾯&#xff0c;所有箭头⽅向都是⼀致的&#xff0c;⽐如上图所有箭头都是朝右的。 很显然&#xff0c;如…

视频汇聚/视频云存储/视频监控管理平台EasyCVR部署后无法正常启用是什么问题?该如何解决?

安防监控/视频监控/视频汇聚平台EasyCVR能在复杂的网络环境中&#xff0c;将分散的各类视频资源进行统一汇聚、整合、集中管理&#xff0c;在视频监控播放上&#xff0c;视频云存储/安防监控汇聚平台EasyCVR支持多种播放协议&#xff0c;包括&#xff1a;HLS、HTTP-FLV、WebSoc…

物联网应用中蓝牙模块怎么选?_蓝牙模块厂家

在蓝牙模块选型前期&#xff0c;一定要了解应用场景以及需要实现的功能&#xff08;应用框图&#xff09;&#xff0c;以及功能实现过程中所能提供调用的接口&#xff08;主从设备&#xff0c;功能&#xff09;&#xff0c;考虑模块供电&#xff0c;尺寸&#xff0c;接收灵敏度…

“深入探究SpringMVC的工作原理与入门实践“

目录 引言1. 什么是SpringMVC?1.1. 模型1.2. 视图1.3. 控制器 2. SpringMVC的工作流程2.1. 客户端发送请求2.2. DispatcherServlet的处理2.3. 处理器映射器的使用2.4. 处理器的执行2.5. 视图解析器的使用2.6. 视图的渲染 3. SpringMVC的核心组件4. 弹簧MVC总结 引言 SpringMV…

GitHub打不开解决方法——授人以渔

打不开GitHub的原因之一&#xff0c;DNS地址解析到了无法访问的ip。&#xff08;为什么无法访问&#xff1f;&#xff09; 1、打开GitHub看是哪个域名无法访问&#xff0c;F12一下 2、DNS解析看对应的域名目前哪个IP可以访问 DNS解析的网址&#xff1a; &#xff08;1&#x…

3D开发工具HOOPS Publish如何快速创建交互式3D PDF文档?

HOOPS Publish是一款功能强大的SDK&#xff0c;可以创作丰富的工程数据并将模型文件导出为各种行业标准格式&#xff0c;包括PDF、STEP、JT和3MF。HOOPS Publish核心的3D数据模型是经过ISO认证的PRC格式(ISO 14739-1:2014)&#xff0c;它为装配树、拓扑和几何、产品制造信息和视…

将序数与比特币智能合约集成:第 1 部分

将序数与比特币智能合约集成&#xff1a;第 1 部分 最近&#xff0c;比特币序数在区块链领域引起了广泛关注。 据称&#xff0c;与以太坊 ERC-721 等其他代币标准相比&#xff0c;Ordinals 的一个主要缺点是缺乏对智能合约的支持。 我们展示了如何向 Ordinals 添加智能合约功…

分布式 - 服务器Nginx:基础系列之Nginx静态资源优化配置指令sendfile | tcp_nopush | tcp_nodelay

文章目录 1. sendfile 指令2. tcp_nopush 指令3. tcp_nodelay 指令 1. sendfile 指令 请求静态资源的过程&#xff1a;客户端通过网络接口向服务端发送请求&#xff0c;操作系统将这些客户端的请求传递给服务器端应用程序&#xff0c;服务器端应用程序会处理这些请求&#xff…

【综述+3D】基于NeRF的三维视觉2023年度进展报告(截止2023.06.10)

论文&#xff1a;2003.Representing Scenes as Neural Radiance Fields for View Synthesis 官方网站&#xff1a;https://www.matthewtancik.com/nerf 突破性后续改进&#xff1a; Instant Neural Graphics Primitives with a Multiresolution Hash Encoding | 展示官网&#…

故障分析 | OceanBase 频繁更新数据后读性能下降的排查

以下文章来源于爱可生开源社区 &#xff0c;作者张乾 爱可生开源社区. 爱可生开源社区&#xff0c;提供稳定的MySQL企业级开源工具及服务&#xff0c;每年1024开源一款优良组件&#xff0c;并持续运营维护。 测试在做 OceanBase 纯读性能压测的时候&#xff0c;发现对数据做过…

MySQL表的内连和外连

文章目录 MySQL表的内连和外连1. 内连接(1) 显示SMITH的名字和部门名称 2. 外连接2.1 左外连接(1) 查询所有学生的成绩&#xff0c;如果这个学生没有成绩&#xff0c;也要将学生的个人信息显示出来 2.2 右外连接(1) 对stu表和exam表联合查询&#xff0c;把所有的成绩都显示出来…

如何使用蚂蚁集团自动化混沌工程 ChaosMeta 做 OceanBase 攻防演练?

当前&#xff0c;业界主流的混沌工程项目基本只关注如何制造故障的问题&#xff0c;而经常做演练相关工作的工程师应该明白&#xff0c;每次演练时还会遇到以下痛点&#xff1a; 检测当前环境是否符合演练预设条件&#xff08;演练准入&#xff09;&#xff1b; 业务流量是否满…

Apache Linkis 与 OceanBase 集成:实现数据分析速度提升

导语&#xff1a;恭喜 OceanBase 生态全景图中又添一员&#xff0c;Apache Linkis 构建了一个计算中间件层&#xff0c;以促进上层应用程序和底层数据引擎之间的连接、治理和编排。 近日&#xff0c;计算中间件 Apache Linkis 在其新版本中通过数据源功能&#xff0c;支持用户通…

vue仿企微文档给页面加水印(水印内容可自定义,超简单)

1.在src下得到utils里新建一个文件watermark.js /** 水印添加方法 */let setWatermark (str1, str2) > {let id 1.23452384164.123412415if (document.getElementById(id) ! null) {document.body.removeChild(document.getElementById(id))}let can document.createE…

恒运资本:沪指涨逾1%,金融、地产等板块走强,北向资金净买入超60亿元

4日早盘&#xff0c;两市股指盘中强势上扬&#xff0c;沪指、深成指涨超1%&#xff0c;上证50指数涨近2%&#xff1b;两市半日成交约5500亿元&#xff0c;北向资金大举流入&#xff0c;半日净买入超60亿元。 截至午间收盘&#xff0c;沪指涨1.12%报3168.38点&#xff0c;深成指…