基于神经网络结合紫外差分光谱的二氧化硫浓度定量预测

基于神经网络结合紫外差分光谱的二氧化硫浓度定量预测

  • 前言
  • 一、代码运行
    • 1. 解压数据
    • 2. 导包
    • 3. 读取数据
    • 4. 构建网络
    • 5. 设置优化器
    • 6. 模型训练
    • 7. 可视化loss
    • 8. 模型验证
  • 二、结果展示
  • 三、总结
  • 作者简介

前言

二氧化硫(SO2)是一种常见的环境污染物,对大气、水体和土壤等环境有着广泛的影响。因此,准确监测和预测大气中的二氧化硫浓度对于环境管理和污染控制具有重要意义。紫外差分光谱是一种常用于二氧化硫浓度监测的方法,通过测量大气中SO2在紫外光波段的吸收特性来进行定量分析。
本项目旨在通过应用神经网络技术,结合紫外差分光谱数据,实现对二氧化硫浓度的准确定量预测。项目将采用从不同环境中收集的紫外差分光谱数据,包括大气中SO2的光谱吸收特性以及环境参数(如温度、湿度等),作为输入特征。基于这些输入特征,将建立一个神经网络模型,通过对历史数据的学习和训练,实现对二氧化硫浓度的预测。

项目计划包括以下步骤:

  1. 数据采集和准备:从不同环境中采集紫外差分光谱数据,包括SO2的光谱吸收特性以及环境参数。对采集到的数据进行处理和准备,包括数据清洗、特征提取和特征工程等。
  2. 模型选择和设计:根据项目需求,选择合适的神经网络模型,并进行模型的设计。可以考虑使用常见的神经网络模型,如多层感知器(MLP)、卷积神经网络(CNN)或循环神经网络(RNN)等。
  3. 模型训练和调优:使用采集到的紫外差分光谱数据,对选定的神经网络模型进行训练和调优。包括将数据集划分为训练集和验证集,进行模型参数的优化和调整,以获得最佳的预测性能。
  4. 模型评估和验证:通过对模型进行评估和验证,包括使用测试数据集进行性能测试,评估模型的预测准确性、稳定性和可靠性。根据评估结果进行模型的调整和优化。
  5. 结果解释和应用:根据训练好的神经网络模型,实现对二氧化硫的浓度预测

在这里插入图片描述

一、代码运行

本文的代码是基于百度的BML Codelab编写,项目地址:基于神经网络结合紫外差分光谱的二氧化硫浓度定量预测,数据在项目中被提供。

1. 解压数据

# 运行完一次记得注释掉
!unzip /home/aistudio/data/data208645/Data.zip -d ./data

2. 导包

import pandas as pd
import paddle
import numpy as np
from sklearn.model_selection import cross_val_score, train_test_split
import matplotlib.pyplot as plt

3. 读取数据

train_data = pd.read_excel("./data/Data/train.xlsx", header=None)
val_data = pd.read_excel("./data/Data/val.xlsx", header=None)
test_data = pd.read_excel("./data/Data/test.xlsx", header=None)
print("加载数据完成!")print("train_data:",train_data)
print("val_data:",val_data)
print("test_data:",test_data)

4. 构建网络

class Regressor(paddle.nn.Layer):# self代表类的实例自身def __init__(self):# 初始化父类中的一些参数super(Regressor, self).__init__()self.fc1 = paddle.nn.Linear(in_features=423, out_features=40)self.fc2 = paddle.nn.Linear(in_features=40, out_features=20)self.fc3 = paddle.nn.Linear(in_features=20, out_features=1)self.relu = paddle.nn.ReLU()# 网络的前向计算def forward(self, inputs):x = self.fc1(inputs)x = self.relu(x)x = self.fc2(x)x = self.relu(x)x = self.fc3(x)x = self.relu(x)return x

5. 设置优化器

# 声明定义好的线性回归模型
model = Regressor()# 开启模型训练模式
model.train()# 定义优化算法,使用随机梯度下降SGD
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())

6. 模型训练

EPOCH_NUM = 20   # 设置外层循环次数
BATCH_SIZE =32  # 设置batch大小
loss_train = []
loss_val = []
training_data = train_data.values.astype(np.float32)
val_data = val_data.values.astype(np.float32)
# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]train_loss = []for iter_id, mini_batch in enumerate(mini_batches):# 清空梯度变量,以备下一轮计算opt.clear_grad()x = np.array(mini_batch[:, :-1])y = np.array(mini_batch[:, -1:])# 将numpy数据转为飞桨动态图tensor的格式features = paddle.to_tensor(x)y = paddle.to_tensor(y)# 前向计算predicts = model(features)# 计算损失loss = paddle.nn.functional.l1_loss(predicts, label=y)avg_loss = paddle.mean(loss)train_loss.append(avg_loss.numpy())# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()mini_batches = [val_data[k:k+BATCH_SIZE] for k in range(0, len(val_data), BATCH_SIZE)]val_loss = []for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1])y = np.array(mini_batch[:, -1:])features = paddle.to_tensor(x)y = paddle.to_tensor(y)predicts = model(features)loss = paddle.nn.functional.l1_loss(predicts, label=y)avg_loss = paddle.mean(loss)val_loss.append(avg_loss.numpy())loss_train.append(np.mean(train_loss))loss_val.append(np.mean(val_loss))print(f'Epoch {epoch_id}, train MAE {np.mean(train_loss)}, val MAE {np.mean(val_loss)}')

7. 可视化loss

# loss
x = np.linspace(0, EPOCH_NUM+1, EPOCH_NUM)plt.figure()
plt.plot(x, loss_train, color='red', linewidth=1.0, linestyle='--', label='line')
plt.plot(x, loss_val, color='y', linewidth=1.0, label='line')
plt.savefig('loss.png', dpi=600, bbox_inches='tight', transparent=False)
plt.legend(["train MAE", "val MAE"])
plt.title("Loss")
plt.xlabel('epoch_num')
plt.ylabel('loss value')

在这里插入图片描述

8. 模型验证

model.eval()
test_data = paddle.to_tensor(test_data.values.astype(np.float32))
test_predict = model(test_data)
test_predict = test_predict.numpy().flatten()
test_predict = test_predict.round().astype(int)
print("test_predict:",test_predict)

在这里插入图片描述

二、结果展示

x = np.linspace(0, 10, 9)
Y_test = [4,9,5,6,7,14,12,13,15]
Y_test = np.array(Y_test)predicted = test_predict
plt.figure()
plt.scatter(x, predicted, color='red')  # 画点
plt.scatter(x, Y_test, color='y')  # 画点
plt.plot(x, predicted, color='red', linewidth=1.0, linestyle='--', label='line')
plt.plot(x, Y_test, color='y', linewidth=1.0, label='line')
plt.savefig('result.png', dpi=600, bbox_inches='tight', transparent=False)
plt.legend(["predict value", "true value"])
plt.title("SO2")
plt.xlabel('X')
plt.ylabel('Absorption intensity')

在这里插入图片描述
在这里插入图片描述

三、总结

  • 从图中我们可以看出,在SO2高浓度的时候,预测的不是很准确,这大概率是因为非线性的影响。
  • 在气体浓度定量分析中,如何去除非线性的影响,是一直研究的课题。
  • 可以加入光谱预处理来提高模型的准确性
  • 例如可以对数据进行差分拟合、小波变换、傅里叶变换等来改进

作者简介

CSDN 人工智能领域新星创作者

百度飞桨开发者技术专家

腾讯云开发初级工程师认证

我在AI Studio上获得钻石等级,点亮9个徽章,来互关呀~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122300.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电梯五方对讲接口说明 Sip五方对讲使用说明

1.2/4线接线模块输出接口;接4方对讲设备:12V,2/4线接线模块供电输入 -:GND,接地 R二/四线R Li二四线L 2.RS-485接口:预留援口,可接读卡器、楼层控制器、探头,需要软件额外开发实现。 3.短路输出接口2:对应短路输入接口&#x…

【C++】DICOM医学影像工作站PACS源码

PACS即影像存档与传输系统,是医学影像、数字化图像技术、计算机技术和网络通讯技术相结合的产物,是处理各种医学影像信息的采集、存储、报告、输出、管理、查询的计算机应用程序。 PACS是基于DICOM标准的医学影像管理系统,其模块覆盖了从影像…

【USRP】产品型号、参数、架构全解析系列 6:N320 / N321

一、USRP 简介 通用软件无线电外设( USRP ) 是由 Ettus Research 及其母公司National Instruments设计和销售的一系列软件定义无线电。USRP 产品系列由Matt Ettus领导的团队开发,被研究实验室、大学和业余爱好者广泛使用。 大多数 USRP 通过以太网线连接到主机&am…

ZooKeeper基础命令和Java客户端操作

1、zkCli的常用命令操作 (1)Help (2)ls 使用 ls 命令来查看当前znode中所包含的内容 (3)ls2查看当前节点数据并能看到更新次数等数据 (4)stat查看节点状态 (5&#xf…

区块链实验室(20) - FISCO控制台连接到指定的节点

在FISCO技术文档中,控制台默认采用config.toml作为配置文件,并指定了连接的节点地址和商品,如下所示。 [network] peers["127.0.0.1:20200", "127.0.0.1:20201"] # The peer list to connect在该案例中,控…

数据结构:栈的实现

1. 栈(Stack) 1.1 栈的概念 栈(Stack)是只允许在一端进行插入或删除操作的线性表.首先栈是一种线性表,但限定这种线性表只能在某一端进行插入和删除操作.进行数据插入和删除操作的一端叫栈顶,另一端称为栈底.栈中的元素遵循后进先出LIFO(Last In First Out)的原则 压栈:栈的插…

【算法系列篇】分治-归并

文章目录 前言什么是归并算法1. 排序数组1.1 题目要求1.2 做题思路1.3 Java代码实现 2. 数组中逆序对2.1 题目要求2.2 做题思路2.3 Java代码实现 3. 计算右侧小于当前元素的个数3.1 题目要求3.2 做题思路3.3 Java代码实现 4. 翻转对4.1 题目要求4.2 做题思路4.3 Java代码实现 总…

【漏洞复现】广联达办公OAsql+文件上传+弱口令

漏洞描述 广联达办公OA是一款综合办公自动化解决方案,旨在提高组织内部的工作效率和协作能力。它提供了一系列功能和工具,帮助企业管理和处理日常办公任务、流程和文档。默认弱口令admin password,后面就不提了。 免责声明 技术文章仅供参考,任何个人和组织使用网络应当…

uni-app:实现右侧弹窗

效果&#xff1a; 代码&#xff1a; <template><view class"container"><button click"showModal true">点击按钮</button><view class"modal-overlay" v-if"showModal" click"closeModal">…

Django学习

1、启动项目 python manage.py runserversettings.py 视图函数&#xff0c;用于接收浏览器请求 Django使用的是MTV,是MVC是升级

通过nginx将https协议反向代理到http协议请求上

通过nginx将https协议反向代理到http协议请求上 1、问题背景2、介绍nginx的反向代理功能及配置https协议3、具体实现3.1 后端服务支持方式3.2 nginx重定向方式 3.3、nginx的反向代理方式4、关于nginx常用模块和指令 1、问题背景 目前一个系统仅支持https协议访问&#xff0c;因…

【Linux安装java环境】超简单,以jdk8为例

文章目录 前言详细步骤总结 前言 一些小伙伴在到手一台虚拟机后&#xff0c;发现需要配置java环境&#xff0c;看了文章后会发现超级简单&#xff0c;以下内容以安装jdk1.8为例。 详细步骤 查看是否存在java环境java -version若弹出找不到java命令&#xff0c;执行下一步。官…

linux并发服务器 —— IO多路复用(八)

半关闭、端口复用 半关闭只能实现数据单方向的传输&#xff1b;当TCP 接中A向 B 发送 FIN 请求关闭&#xff0c;另一端 B 回应ACK 之后 (A 端进入 FIN_WAIT_2 状态)&#xff0c;并没有立即发送 FIN 给 A&#xff0c;A 方处于半连接状态 (半开关)&#xff0c;此时 A 可以接收 B…

Java逻辑控制

目录 一、顺序结构 二、分支结构 1、if语句 &#xff08;1&#xff09; 语法格式1​编辑 &#xff08;2&#xff09;语法格式2​编辑 &#xff08;3&#xff09;语法格式3 2、switch 语句 三、循环结构 1、while循环 2、break 3、continue 4、for 循环 5、do whil…

实训笔记9.1

实训笔记9.1 9.1笔记一、项目开发流程一共分为七个阶段1.1 数据产生阶段1.2 数据采集存储阶段1.3 数据清洗预处理阶段1.4 数据统计分析阶段1.5 数据迁移导出阶段1.6 数据可视化阶段 二、项目的数据产生阶段三、项目的数据采集存储阶段四、项目数据清洗预处理的实现4.1 清洗预处…

MongoDB基础知识点

MongoDB基础知识点 1.MongoDB简介1.1基本信息1.2作用1.3下载 2.MongoDB安装1.Ubuntu22.042.Windows(非msi) 3.MongoDB基本操作1.基本概念2.MongoDB文件增删改查(CURD)1.插入数据2.查询数据3.修改数据4.删除数据5.删除字段 4.MongoDB实战管理系统数据库设计1.设计数据库2.Mongod…

企业架构LNMP学习笔记13

上线商城项目&#xff1a; 1&#xff09;上传项目文件到数据库&#xff1a; 入口文件位置的设计是为了让应用部署更安全&#xff0c;public目录为web可访问目录&#xff0c;其他的文件都可以放到非web访问目录下面。 nginx 默认访问index.html。没有index.html&#xff0c;就会…

宠物电商Chewy第二季度销售额28亿美元,同比增长14.3%

美国宠物电商Chewy公布2023年第二季度财报。报告显示&#xff0c;其Q2季度销售额同比增长14.3%至28亿美元&#xff0c;超出市场预期。 以下为Chewy期内业绩概要&#xff1a; 1.毛利率28.3%&#xff0c;同比增长20个基点 2.净利润有所收窄&#xff0c;同比下降15.2%至1890万美…

【深入解析spring cloud gateway】06 gateway源码简要分析

上一节做了一个很简单的示例&#xff0c;微服务通过注册到eureka上&#xff0c;然后网关通过服务发现访问到对应的微服务。本节将简单地对整个gateway请求转发过程做一个简单的分析。 一、核心流程 主要流程&#xff1a; Gateway Client向 Spring Cloud Gateway 发送请求请求…

客服部门都应该建立一个自有的在线FAQ系统

问答系统是目前应用最广泛的问答系统。这种问答系统的结构框架明了、实现简单、容易理解&#xff0c;非常适合作为问答系统入门学习时的观察对象。所以越来越多的企业需要建立一个自有的在线FAQ系统&#xff0c;这对对于客服部门来说是非常有益的。 企业需要搭建自己FAQ系统的理…