机器人中的数值优化(六)—— 线搜索最速下降法

   本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考,主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等,本系列文章篇数较多,不定期更新,上半部分介绍无约束优化,下半部分介绍带约束的优化,中间会穿插一些路径规划方面的应用实例



   八、线搜索最速下降法

   1、最速梯度下降法简介

   梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函数和模型参数值。反过来,如果我们需要求解损失函数的最大值,这时就需要用梯度上升法来迭代了。在机器学习中,基于基本的梯度下降法发展了两种梯度下降方法,分别为随机梯度下降法和批量梯度下降法。

   最速梯度下降法利用函数的一阶信息局部的去找一个让函数下降最快的方向,然后沿着这个方向不断的逼近局部极小值

   对于有梯度的函数而言,最速下降的方向一定是其梯度的反方向(如下图中的蓝色箭头所示)

   如果梯度存在,沿着梯度的反方向去更新一个x,一定会更接近于局部极小值,迭代格式如下式所示,其中τ是步长, ∇ f ( x k ) \nabla\text{}f\left(x^k\right)\quad\text{} f(xk)是梯度或最小范数次梯度(次梯度集合里面模长最小的那个向量取反方向)

   x k + 1 = x k − τ ∇ f ( x k ) x^{k+1}=x^{k}-τ\nabla\text{}f\left(x^k\right)\quad\text{} xk+1=xkτf(xk)



   2、最速梯度下降法流程


   3、步长τ的选取

   ① 策略1:τ取固定常量,如1、0.1、0.01等

   ② 策略2:τ取递减量,随着搜索的次数增加而减小

   ③ 策略3:精确线搜索,理想的方式,每次搜索的步长都沿着搜索方向让多元函数的截面到达最低点,称为最佳步长,沿着搜索方向下降最多的步长。然而找最佳步长本身就是一个优化的问题。

   ④ 策略4:非精确线搜索,将策略3的条件进行弱化,使得搜索步长不需要解决子优化问题,也可以快速的搜索


   内容补充:一阶方向导数表示函数在该点处沿着方向d的函数值的变化率,可表示成如下的形式

   ∂ f ( x ) ∂ d = 1 ∥ d ∥ ∇ f ( x ) T d ; \frac{\partial f\left(x\right)}{\partial d}=\frac{1}{\left\|d\right\|}\nabla f(x)^{T}d; df(x)=d1f(x)Td;


   (1)策略①, τ取固定常量时,若步长太大,可能振荡发散;步长太小,可能收敛过慢,当步长恰当时,快速收敛。因此固定步长策略需要依靠经验设定合适的步长,如下图所示:


   (2) 策略②的稳定性较强,但收敛速度较慢,一般用于对函数的条件很差的时候,并且对于求解速率和时间没什么要求的时候。


   (3) 策略④,我们可以沿着搜索方向d,把周围的函数 f ( x k ) f(x^{k}) fxk解出一个一维的函数,这个函数的意思就是,当步长取α时,对应函数的高度就是图中曲线,φ(0)值是 f f f f ( x k ) f(x^{k}) fxk处的初始值

   如果仅是让函数下降的话,跟初始值φ(0)齐平以下的所有区域都可以选,如下图所示的0~α2区域,但是为了更快的下降,需要更严苛的条件,这个条件是跟梯度有关的,比如若局部极小值为1,而当前解为1.001,无论如何不能让函数的下降大于0.001,因此,我们要根据函数当前的梯度或者斜域来定充分下降的斜对数,它的斜率就是φ(0)的斜率,即搜索方向d与 x k x^{k} xk处梯度的点积 d T ∇ f ( x k ) d^{\mathrm{T}}\nabla f(x^{k}) dTf(xk),再乘以一个0~1的系数c对其进行放松,得到一个更小的区间0 ~ α1,一般来说,我们需要找一个不接近于0的步长,在这个Armijo condition 区域内搜索一个较靠右的步长,即我们想要的步长。

   对于非凸函数的可接受区域如下图所示:


   4、最速下降法流程及策略③和④的比较

   给定一个x0,首先求他的梯度,取负梯度为它的搜索方向,然后利用二分法不断的二分α区间去找一个满足Armijo condition的步长α,然后接受他,去更新下一个x的位置,不断的循环,当f在xk处的梯度的模长足够小时,结束循环。(当不可微时,梯度改为次微分检验,即含零向量时,即可结束循环)


   策略③只有找到上图中的最低点时,才进行更新,而策略④只要找到的步长位于Armijo condition 区域内即可进行更新。这样会节省一些时间,而且更简单一些,在工程中策略④更常用

   从下图中可以看出,若采用精确线搜索(策略③),只需要寥寥几步更新就可以收敛较理想的状态,若采用充分下降线搜索(策略④)可能需要迭代多次更新,但是精确线搜索每次迭代花费算力较多,时间较长,而充分下降搜索耗时较少,所以总的花费时间≈单次耗时x迭代次数。两种策略的总耗时是近似的。


   在下图所示的这样一个100维的凸函数的例子中,当精度要求比较高时,如0.0001,两种策略的迭代次数近似,而策略③的每次迭代耗时多于策略④


   5、最速下降法的收敛速度

   u在G度量意义下的范数 ∥ u ∥ G 2 \|u\|_G^2 uG2定义为:(其中G为Hesse矩阵)

   ∥ u ∥ G 2 = u T G u . \|u\|_G^2={u}^\mathrm{T}Gu. uG2=uTGu.

   对正定二次函数,最速下降方法的收敛速度为

   ∥ x k + 1 − x ∗ ∥ G 2 ∥ x k − x ∗ ∥ G ⩽ ( λ max − λ min λ max + λ min ) 2 . \frac{\|x_{k+1}-x^*\|_G^2}{\|x_k-x^*\|_G}\leqslant\left(\frac{\lambda_{\text{max}}-\lambda_{\text{min}}}{\lambda_{\text{max}}+\lambda_{\text{min}}}\right)^2. xkxGxk+1xG2(λmax+λminλmaxλmin)2.

   上式中有 :(其中 cond ⁡ ( G ) = ∥ G ∥ ∥ G − 1 ∥ \operatorname{cond}(G)=\|G\|\|G^{-1}\| cond(G)=G∥∥G1称为矩阵G的条件数)

   λ max ⁡ − λ min ⁡ λ max ⁡ + λ min ⁡ = c o n d ( G ) − 1 c o n d ( G ) + 1 ≜ μ \frac{\lambda_{\max}-\lambda_{\min}}{\lambda_{\max}+\lambda_{\min}}=\frac{\mathrm{cond}(G)-1}{\mathrm{cond}(G)+1}\triangleq\mu λmax+λminλmaxλmin=cond(G)+1cond(G)1μ.

   由上式可以看出,最速下降方法的收敛速度依赖于G的条件数.当G的条件数接近于1时, u接近于零,最速下降方法的收敛速度接近于超线性收敛速度;而G的条件数越大,u越接近于1,该方法的收敛速度越慢.

   Hesse矩阵G的条件数的差异造成了最速下降方法对如下图所示的两个问题收敛速度的差异.在下图可以看出,最速下降方法相邻两步的迭代方向互相垂直,Hesse矩阵的条件数越大,二次函数一族椭圆的等高线越扁.可以想象,当目标函数的等高线为一族很扁的椭圆时,迭代在两个相互垂直的方向上交替进行.如果这两个方向没有一个指向极小点,迭代会相当缓慢,甚至收敛不到极小点.


   6、最速下降法的优缺点

   (1)缺点

   当一个凸函数的条件数等于2时,等高线是一系列的椭圆,他的梯度是垂直于椭圆的边界的,如果条件数很大,椭圆就很扁,用最速下降法来迭代就会产生一些震荡。


   当条件数更大,如100时,椭圆会更扁,由于梯度方向与等高线垂直,导致梯度方向近似于平行,需要震荡很久才能收敛到局部极小值。所以当函数的曲率很大,或者条件数很大的时候,采用梯度下降法可能需要很多的迭代次数。


   下图是一个二维的二次函数的例子,从图中可以看出,随着条件数的增大,收敛所需的迭代次数也随之增加


   (2)优点

   最速下降方法的优点是:算法每次迭代的计算量少,存储量亦少; 即使从一个不太好的初始点出发,算法产生的迭代点也可能接近极小点.



   参考资料:

   1、机器人中的数值优化

   2、梯度下降

   3、数值最优化方法(高立 编著)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/122454.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 18 四数之和

题目链接 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 题目解析 固定两个数&#xff0c;然后利用双指针来进行剩下两个数的筛选 主要使用的是三数之和的思想&#xff0c;具体可以看我上篇博客 注意去重 代码 class Solution { public:vector<…

STM32微控制器的低功耗模式

STM32微控制器的低功耗模式(Low-power modes):Sleep mode、Stop mode 和 Standby mode。 1.1 Sleep Mode(睡眠模式): 把STM32微控制器当作一位劳累的工人,他在工作过程中需要短暂的休息。在Sleep模式下,微控制器会关闭一部分电路,减小功耗,但仍然保持对中央处理单…

机器人中的数值优化(十二)——带约束优化问题简介、LP线性规划

本系列文章主要是我在学习《数值优化》过程中的一些笔记和相关思考&#xff0c;主要的学习资料是深蓝学院的课程《机器人中的数值优化》和高立编著的《数值最优化方法》等&#xff0c;本系列文章篇数较多&#xff0c;不定期更新&#xff0c;上半部分介绍无约束优化&#xff0c;…

【FPGA项目】沙盘演练——基础版报文收发

​​​​​​​ ​​​​​​​ ​​​​​​​ ​​​​​​​ 第1个虚拟项目 前言 点灯开启了我们的FPGA之路&#xff0c;那么我们来继续沙盘演练。 用一个虚拟项目&#xff0c;来入门练习&#xff0c;以此步入数字逻辑的大门。 Key Words&…

功能测试常用的测试用例大全

登录、添加、删除、查询模块是我们经常遇到的&#xff0c;这些模块的测试点该如何考虑 1)登录 ① 用户名和密码都符合要求(格式上的要求) ② 用户名和密码都不符合要求(格式上的要求) ③ 用户名符合要求&#xff0c;密码不符合要求(格式上的要求) ④ 密码符合要求&#xff0c;…

python-爬虫-xpath方法-批量爬取王者皮肤图片

import requests from lxml import etree获取NBA成员信息 # 发送的地址 url https://nba.hupu.com/stats/players # UA 伪装 google header {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.3…

自然语言处理历史史诗:NLP的范式演变与Python全实现

目录 一、引言什么是自然语言处理&#xff1f;语言与人类思维自然语言的复杂性NLP的历史轨迹 二、20世纪50年代末到60年代的初创期符号学派重要的研究和突破 随机学派重要的研究和突破 三、20世纪70年代到80年代的理性主义时代基于逻辑的范式重要的研究和突破 基于规则的范式重…

前端瀑布流效果

先看效果 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> &l…

python调用C语言库

1. 在linux下通过gcc生成so库 //请保存为 foo.c #include<stdio.h> #define uint8_t unsigned char #define uint16_t unsigned shorttypedef struct TagMyStruct {char name[10];uint8_t age;int score; } MyStruct,*MyStructPointer;MyStructPointer foo_get_data_…

智慧工厂能源管理系统

随着全球工业4.0浪潮的推进&#xff0c;制造业逐渐向智能化、绿色化方向发展。其中&#xff0c;智慧工厂能源管理系统作为绿色智能制造的重要组成部分&#xff0c;对于提高企业能源利用效率、降低生产成本具有重要意义。本文将从智慧工厂能源管理系统的背景、技术架构、功能及应…

报错:axios发送的所有请求都是404

axios发送的所有请求都是404 一、问题二、分析三、解决一、问题 对后台发送数据请求接口,在 Swagger 上是可以请求到的 但是通过 Ajax 发送请求就会报 404 Swagger 上调用如下 项目接口请求如下

实践和项目:解决实际问题时,选择合适的数据结构和算法

文章目录 选择合适的数据结构数组链表栈队列树图哈希表 选择合适的算法实践和项目 &#x1f389;欢迎来到数据结构学习专栏~实践和项目&#xff1a;解决实际问题时&#xff0c;选择合适的数据结构和算法 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒&#x1f379;✨博客主页&#xff1a;IT…

简易版人脸识别qt opencv

1、配置文件.pro #------------------------------------------------- # # Project created by QtCreator 2023-09-05T19:00:36 # #-------------------------------------------------QT core guigreaterThan(QT_MAJOR_VERSION, 4): QT widgetsTARGET 01_face TEMP…

FLUX查询InfluxDB -- InfluxDB笔记三

1. 入门 from(bucket: "example_query") // 没有筛选条件直接查询会报错|> range(start: -1h) // |>是管道符&#xff0c;后跟筛选条件 2. 序列、表和表流 序列是InfluxDB的概念&#xff0c;一个序列是由measurement、标签集、一个字段名称 表流是FLUX为了…

Python Opencv实践 - 轮廓特征(最小外接圆,椭圆拟合)

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/stars.PNG") plt.imshow(img[:,:,::-1])#轮廓检测 img_gray cv.cvtColor(img, cv.COLOR_BGR2GRAY) ret,thresh cv.threshold(img_gray, 127, 255, 0) contou…

纯前端实现 导入 与 导出 Excel

最近经常在做 不规则Excel的导入&#xff0c;或者一些普通Excel的导出&#xff0c;当前以上说的都是纯前端来实现&#xff1b;下面我们来聊聊经常用到的Excel导出与导入的实现方案&#xff0c;本文实现技术栈以 Vue2 JS 为例 导入分类&#xff1a; 调用 API 完全由后端来解析数…

C++(QT)画图行车

通过鼠标在窗口上点击形成多个点的连线&#xff0c;绘制一辆汽车沿着绘制的连线轨迹前进。要求连线点数大于20.可以通过清除按钮清除已经绘制的连线&#xff0c;并可以重新绘制一条轨迹连线。当车辆行驶到轨迹终点时&#xff0c;自动停止。&#xff08;汽车实在可用方块代替&am…

MIT6.S081实验环境搭建

MIT6.S081 lab 环境搭建 本文参考了MIT的官方指南和知乎文章环境搭建 step1 首先需要一个ubuntu20.04的系统&#xff0c;我使用的是vscode的WSL2连接的ubuntu20.04&#xff0c;使用virtual box建一个ubuntu20.04的虚拟机应该也可以。 可以用 lsb_release -a 查看一下自己ub…

NoSQL之Redis配置与优化(一)

关系数据库与非关系型数据库 &#xff1a; ●关系型数据库&#xff1a; 关系型数据库是一个结构化的数据库&#xff0c;创建在关系模型&#xff08;二维表格模型&#xff09;基础上&#xff0c;一般面向于记录。 SQL 语句&#xff08;标准数据查询语言&#xff09;就是一种基于…

网站edge -- 油猴 -> IDM

一、百度网盘限速 未解决 软件&#xff1a;IDM 安装路径&#xff1a; 1.1如果&#xff1a;edge 出问题打不开其他网站&#xff0c; 解决方法&#xff1a; 以管理员的身份&#xff0c;右击载这个软件&#xff0c;就好了 1.2使用这个软件 应该是右击这个软件 以管理员的身…