1、数值种类
Verilog HDL 有下列四种基本的值来表示硬件电路中的电平逻辑:
- 0:逻辑 0 或 “假”
- 1:逻辑 1 或 “真”
- x 或 X:未知
x 意味着信号数值的不确定,即在实际电路里,信号可能为 1,也可能为 0。 - z 或 Z:高阻
z 意味着信号处于高阻状态,常见于信号(input, reg)没有驱动时的逻辑结果。例如一个 pad 的 input 呈现高阻状态时,其逻辑值和上下拉的状态有关系。上拉则逻辑值为 1,下拉则为 0 。
2、数据类型
Verilog 最常用的 2 种数据类型就是线网(wire)与寄存器(reg),其余类型可以理解为这两种数据类型的扩展或辅助。
线网(wire)
wire 类型表示硬件单元之间的物理连线,由其连接的器件输出端连续驱动。如果没有驱动元件连接到 wire 型变量,缺省值一般为 “Z”。
寄存器(reg)
寄存器(reg)用来表示存储单元,它会保持数据原有的值,直到被改写。
例如在 always 块中,寄存器可能被综合成边沿触发器,在组合逻辑中可能被综合成 wire 型变量。寄存器不需要驱动源,也不一定需要时钟信号。在仿真时,寄存器的值可在任意时刻通过赋值操作进行改写。例如:
reg rstn ;
initial beginrstn = 1'b0 ;#100 ;rstn = 1'b1 ;
end
向量
当位宽大于 1 时,wire 或 reg 即可声明为向量的形式。
Verillog 还支持指定 bit 位后固定位宽的向量域选择访问。
- [bit+: width] : 从起始 bit 位开始递增,位宽为 width。
- [bit-: width] : 从起始 bit 位开始递减,位宽为 width。
例如:
//下面 2 种赋值是等效的
A = data1[5- : 2] ;
A = data1[5 : 4] ;
//下面 2 种赋值是等效的
B = data1[0+ : 8] ;
B = data1[0 : 7] ;
参数
参数用来表示常量,用关键字 parameter 声明,只能赋值一次。
例如:
parameter data_width = 10'd32 ;
parameter i=1, j=2, k=3 ;
parameter mem_size = data_width * 10 ;
但是,通过实例化的方式,可以更改参数在模块中的值。
局部参数用 localparam 来声明,其作用和用法与 parameter 相同,区别在于它的值不能被改变。所以当参数只在本模块中调用时,可用 localparam 来说明。
字符串
字符串保存在 reg 类型的变量中,每个字符占用一个字节(8bit)。因此寄存器变量的宽度应该足够大,以保证不会溢出。
字符串不能多行书写,即字符串中不能包含回车符。如果寄存器变量的宽度大于字符串的大小,则使用 0 来填充左边的空余位;如果寄存器变量的宽度小于字符串大小,则会截去字符串左边多余的数据。
例如:为存储字符串 “erpao”, 需要 5*8bit 的存储单元
reg [0: 5*8-1] str ;
initial beginstr = "erpao";
end
在 System Verilog(主要用于 Verilog 仿真的编程语言)语言中,已经可以直接用关键字 string 来表示字符串变量类型。
3、表达式
按位操作符
按位操作符包括:取反(),与(&),或(|),异或(^),同或(^)。
按位操作符对 2 个操作数的每 1bit 数据进行按位操作。
如果 2 个操作数位宽不相等,则用 0 向左扩展补充较短的操作数。
取反操作符只有一个操作数,它对操作数的每 1bit 数据进行取反操作。
下图给出了按位操作符的逻辑规则。
实例:
A = 4'b0101 ;
B = 4'b1001 ;
C = 4'bx010 ;~A //4'b1010
A & B //4'b0001
A | B //4'b1101
A^B //4'b1100
A ~^ B //4'b0011
B | C //4'b1011
B&C //4'bx000
拼接操作符
拼接操作符用大括号 {,} 来表示,用于将多个操作数(向量)拼接成新的操作数(向量),信号间用逗号隔开。
拼接符操作数必须指定位宽,常数的话也需要指定位宽。
例如:
A = 4'b1010 ;
B = 1'b1 ;
Y1 = {B, A[3:2], A[0], 4'h3 }; //结果为Y1='b1100_0011
Y2 = {4{B}, 3'd4}; //结果为 Y2=7'b111_1100
Y3 = {32{1'b0}}; //结果为 Y3=32h0,常用作寄存器初始化时匹配位宽的赋初值
4、过程结构
详细内容请点击 Verilog-过程结构
过程结构语句有 2 种,initial 与 always 语句。它们是行为级建模的 2 种基本语句。
一个模块中可以包含多个 initial 和 always 语句,但 2 种语句不能嵌套使用。
这些语句在模块间并行执行,与其在模块的前后顺序没有关系。
但是 initial 语句或 always 语句内部可以理解为是顺序执行的(非阻塞赋值除外)。
每个 initial 语句或 always 语句都会产生一个独立的控制流,执行时间都是从 0 时刻开始。
initial语句
initial 语句从 0 时刻开始执行,只执行一次,多个 initial 块之间是相互独立的。
如果 initial 块内包含多个语句,需要使用关键字 begin 和 end 组成一个块语句。
如果 initial 块内只要一条语句,关键字 begin 和 end 可使用也可不使用。
initial 理论上来讲是不可综合的,多用于初始化、信号检测等。
always 语句
与 initial 语句相反,always 语句是重复执行的。always 语句块从 0 时刻开始执行其中的行为语句;当执行完最后一条语句后,便再次执行语句块中的第一条语句,如此循环反复。
由于循环执行的特点,always 语句多用于仿真时钟的产生,信号行为的检测等。
下面用 always 产生一个 100MHz 时钟源,并在 1010ns 时停止仿真代码如下:
`timescale 1ns/1nsmodule test ;parameter CLK_FREQ = 100 ; //100MHzparameter CLK_CYCLE = 1e9 / (CLK_FREQ * 1e6) ; //switch to nsreg clk ;initial clk = 1'b0 ; //clk is initialized to "0"always #(CLK_CYCLE/2) clk = ~clk ; //generating a real clock by reversingalways begin#10;if ($time >= 1000) begin$finish ;endendendmodule