代码随想录算法训练营第三十二天|509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯

目录

509.斐波那契数

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

        2.确定递推公式

        3.dp数组如何初始化

        4.确定遍历顺序

        5.举例推导dp数组

70.爬楼梯

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

        2.确定递推公式

        3.dp数组如何初始化

        4.确定遍历顺序

        5.举例推导dp数组

746.使用最小花费爬楼梯

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

        2.确定递推公式

        3.dp数组如何初始化

        4.确定遍历顺序

        5.举例推导dp数组


509.斐波那契数

题目链接:509. 斐波那契数 - 力扣(LeetCode)

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

                dp[i]表示第i项斐波那契数列

        2.确定递推公式

                第i项斐波那契数列 = 前两项之和,即dp[i] = dp[i-1] + dp[i-2];

        3.dp数组如何初始化

                递推公式的i = 0和i = 1不符合递推公式,且是最边界情况,特别处理,

         即dp[0] = 0,dp[1] = 1;

        4.确定遍历顺序

                从第三个数据位置开始遍历

        5.举例推导dp数组

                dp[2]、dp[3]符合,递推到dp[...]都可行

class Solution 
{
public:int fib(int n) {vector<int> dp(n+10);dp[0] = 0;dp[1] = 1;for(int i=2; i<=n; i++){dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

70.爬楼梯

题目链接:70. 爬楼梯 - 力扣(LeetCode)

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

                dp[i]表示第i个台阶的方案数

        2.确定递推公式

               1阶:1

                2阶:2

                3阶:先走一步,如果一步走一阶,剩2阶,方案数为2,

                        如果一步走两阶,剩1阶方案数为1,方案数总共2+1 = 3

                4阶:先走一步,如果一步走一阶,剩3阶,方案数为3,

                        如果一步走两阶,剩2阶方案数为2,方案数总共3+2 = 5

                5阶:先走一步,如果一步走一阶,剩4阶,方案数为5,

                        如果一步走两阶,剩3阶方案数为3,方案数总共5+3 = 8

                总结:当前台阶i的方案数 = i-1台阶方案数 +i-2台阶方案数

                即,dp[i] = dp[i-1] + dp[i-2]

        3.dp数组如何初始化

                递推公式的i = 1和i = 2不符合递推公式,且是最边界情况,特别处理,

         即dp[1] = 1,dp[2] = 2;

        4.确定遍历顺序

                从第三个数据位置开始遍历

        5.举例推导dp数组

                第二步推到过了可行。

class Solution {
public:int climbStairs(int n) {vector<int> dp(n+10);dp[1] = 1;dp[2] = 2;for(int i=3; i<=n; i++){dp[i] = dp[i-1] + dp[i-2];	// i-1台阶的方案数 +i-2台阶的方案数 }   return dp[n];}
};

746.使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯 - 力扣(LeetCode)

动态规划五部曲:

        1.确定dp数组(dp table)以及下标的含义

                dp[i]表示到达第i个台阶所花的最小费用

        2.确定递推公式

                0阶:0元。

                1阶:0元。

                2阶:min(到达(2-1)阶的费用+(2-1)阶跳的费用 , 到达(2-2)阶的费用 +(2-2)阶跳的费用)。

                3阶:min(到达(3-1)阶的费用+(3-1)阶跳的费用 , 到达(3-2)阶的费用 +(3-2)阶跳的费用)。

                4阶:min(到达(4-1)阶的费用+(4-1)阶跳的费用 , 到达(4-2)阶的费用 +(4-2)阶跳的费用)。

                整体看感觉思路可行:即,dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])。

        3.dp数组如何初始化

                第0阶和第1阶的为起点,不需要花费价钱,故dp[0] = 0, dp[1] = 0。

        4.确定遍历顺序

                从第三个数据位置开始遍历

        5.举例推导dp数组

                按预期,数据是从第0个台阶依次到第n个台阶(顶点)的变化,所以数据是递推过去的,担心min()可能取0的值,验证了i = 2的程序,和i = 3的清楚,数据按预测的递推过程进行变化,可行。

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size()+10);dp[0] = 0;dp[1] = 0;int n = cost.size();for(int i=2; i<=n; i++){// i-1往上爬 或者i-2往上爬,取最小dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]); // 通过这个输出+题目信息把"<n"改成了"<=n",了解到n-1是台阶,而不是到顶// cout<<dp[i]<<' '<<dp[i-1]+cost[i-1]<<' '<<dp[i-2]+cost[i-2]<<'\n';   }return dp[n];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/123.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IDEA中创建maven项目

1. IDEA中创建maven项目 在IDEA中创建Maven项目&#xff0c;前提是已经安装配置好Maven环境。如还未配置安装Maven的&#xff0c;请先下载安装。如何下载安装&#xff0c;可参考我另外篇文章&#xff1a;maven的下载与安装教程本篇教程是以创建基于servlet的JavaWeb项目为例子&…

【C++入门】详解(中)

目录 &#x1f495;1.函数的重载 &#x1f495;2.引用的定义 &#x1f495;3.引用的一些常见问题 &#x1f495;4.引用——权限的放大/缩小/平移 &#x1f495;5. 不存在的空引用 &#x1f495;6.引用作为函数参数的速度之快&#xff08;代码体现&#xff09; &#x1f4…

django基于Python的电影推荐系统

Django 基于 Python 的电影推荐系统 一、系统概述 Django 基于 Python 的电影推荐系统是一款利用 Django 框架开发的智能化应用程序&#xff0c;旨在为电影爱好者提供个性化的电影推荐服务。该系统通过收集和分析用户的观影历史、评分数据、电影的属性信息&#xff08;如类型…

2024AAAI SCTNet论文阅读笔记

文章目录 SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation摘要背景创新点方法Conv-Former Block卷积注意力机制前馈网络FFN 语义信息对齐模块主干特征对齐共享解码头对齐 总体架构backbone解码器头 对齐损失 实验SOTA效果对比Cit…

_STM32关于CPU超频的参考_HAL

MCU: STM32F407VET6 官方最高稳定频率&#xff1a;168MHz 工具&#xff1a;STM32CubeMX 本篇仅仅只是提供超频&#xff08;默认指的是主频&#xff09;的简单方法&#xff0c;并未涉及STM32超频极限等问题。原理很简单&#xff0c;通过设置锁相环的倍频系数达到不同的频率&am…

python类和对象

一、什么是类和对象 类和对象一般是编程中较早接触到的比较抽象的概念&#xff0c;其实我们只要按照我们现实生活的实例去类比&#xff0c;就很好理解了 概念理解 我们可以把类比做是一个盖房子的图纸&#xff0c;对象比做是根据图纸去创建出来的一栋房子&#xff0c;这样每…

太原理工大学软件设计与体系结构 --javaEE

这个是简答题的内容 选择题的一些老师会给你们题库&#xff0c;一些注意的点我会做出文档在这个网址 项目目录预览 - TYUT复习资料:复习资料 - GitCode 希望大家可以给我一些打赏 什么是Spring的IOC和DI IOC 是一种设计思想&#xff0c;它将对象的创建和对象之间的依赖关系…

CNN Test Data

由于数据量过大&#xff0c;打不开了 搞一组小的吧。收工睡觉 https://download.csdn.net/download/spencer_tseng/90256048

Windows下调试Dify相关组件(2)--后端Api

1.部署依赖的服务&#xff08;代码最外层的docker目录&#xff09; 1.1 将middleware.env.example复制&#xff0c;并改名为middleware.env。 1.2 查看docker-compose.middleware.yaml&#xff0c;有5个服务 db&#xff1a;postgres数据库。 redis&#xff1a;redis缓存。 sa…

从预训练的BERT中提取Embedding

文章目录 背景前置准备思路利用Transformer 库实现 背景 假设要执行一项情感分析任务&#xff0c;样本数据如下 可以看到几个句子及其对应的标签&#xff0c;其中1表示正面情绪&#xff0c;0表示负面情绪。我们可以利用给定的数据集训练一个分类器&#xff0c;对句子所表达的…

HarmonyOS鸿蒙开发 弹窗及加载中指示器HUD功能实现

HarmonyOS鸿蒙开发 弹窗及加载中指示器HUD功能实现 最近在学习鸿蒙开发过程中&#xff0c;阅读了官方文档&#xff0c;在之前做flutter时候&#xff0c;经常使用overlay&#xff0c;使用OverlayEntry加入到overlayState来做添加悬浮按钮、提示弹窗、加载中指示器、加载失败的t…

基于华为ENSP的OSPF状态机、工作过程、配置保姆级别详解(2)

本篇技术博文摘要 &#x1f31f; 基于华为enspOSPF状态机、OSPF工作过程、.OSPF基本配置等保姆级别具体详解步骤&#xff1b;精典图示举例说明、注意点及常见报错问题所对应的解决方法 引言 &#x1f4d8; 在这个快速发展的技术时代&#xff0c;与时俱进是每个IT人的必修课。我…

DeepSeek:性能强劲的开源模型

deepseek 全新系列模型 DeepSeek-V3 首个版本上线并同步开源。登录官网 chat.deepseek.com 即可与最新版 V3 模型对话。 性能对齐海外领军闭源模型​ DeepSeek-V3 为自研 MoE 模型&#xff0c;671B 参数&#xff0c;激活 37B&#xff0c;在 14.8T token 上进行了预训练。 论…

Elastic-Job相关

文档参考视频&#xff1a;09_SpringBoot案例演示_哔哩哔哩_bilibili 一、Elastic-Job介绍 Elastic-Job 是一个轻量级、分布式的任务调度框架&#xff0c;旨在解决分布式环境下的定时任务调度问题。 1.1. Elastic-Job 的核心组件 Elastic-Job 是由多个核心组件构成的&#x…

【Linux】文件 文件描述符fd

&#x1f33b;个人主页&#xff1a;路飞雪吖~ &#x1f320;专栏&#xff1a;Linux 目录 &#x1f33b;个人主页&#xff1a;路飞雪吖~ 一、C文件接口 &#x1f31f;写文件 &#x1f320;小贴士&#xff1a; &#x1f320;stdin && stdout && stderr Linux下…

Java Spring Boot实现基于URL + IP访问频率限制

点击下载《Java Spring Boot实现基于URL IP访问频率限制(源代码)》 1. 引言 在现代 Web 应用中&#xff0c;接口被恶意刷新或暴力请求是一种常见的攻击手段。为了保护系统资源&#xff0c;防止服务器过载或服务不可用&#xff0c;需要对接口的访问频率进行限制。本文将介绍如…

QML states和transitions的使用

一、介绍 1、states Qml states是指在Qml中定义的一组状态&#xff08;States&#xff09;&#xff0c;用于管理UI元素的状态转换和属性变化。每个状态都包含一组属性值的集合&#xff0c;并且可以在不同的状态间进行切换。 通过定义不同的状态&#xff0c;可以在不同的应用场…

SpringCloud

1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff1a;将业务的所有功…

DSP+Simulink——点亮LED灯(TMSDSP28379D)超详细

实现功能&#xff1a;DSP28379D-LED灯闪烁 :matlab为2019a :环境建立见之前文章 Matlab2019a安装C2000 Processors超详细过程 matlab官网链接&#xff1a; Getting Started with Embedded Coder Support Package for Texas Instruments C2000 Processors Overview of Creat…

java_将数据存入elasticsearch进行高效搜索

使用技术简介&#xff1a; (1) 使用Nginx实现反向代理&#xff0c;使前端可以调用多个微服务 (2) 使用nacos将多个服务管理关联起来 (3) 将数据存入elasticsearch进行高效搜索 (4) 使用消息队列rabbitmq进行消息的传递 (5) 使用 openfeign 进行多个服务之间的api调用 参…