深度学习环境搭建笔记(二):mmdetection-CPU安装和训练

文章目录

  • 第一步:安装anaconda
  • 第二步:安装虚拟环境
  • 第三步:安装torch和torchvision
  • 第四步: 安装mmcv-full
  • 第五步: 安装mmdetection
  • 第六步:测试环境
  • 第七步:训练-目标检测
    • 7.1 准备数据集
    • 7.2 检查数据集
    • 7.3 训练网络

第一步:安装anaconda

参考教程:点击

第二步:安装虚拟环境

conda create --name openmmlab python=3.8
conda activate openmmlab

第三步:安装torch和torchvision

conda install pytorch torchvision torchaudio cpuonly -c pytorch

安装的版本为
在这里插入图片描述

第四步: 安装mmcv-full

下载地址:点击
如果是2.*以上的版本,则为mmcv。

pip install mmcv-2.0.1-cp38-cp38-win_amd64.whl

第五步: 安装mmdetection

git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -v -e .
# "-v" 指详细说明,或更多的输出
# "-e" 表示在可编辑模式下安装项目,因此对代码所做的任何本地修改都会生效,从而无需重新安装。

到这里为止,环境的配置就完成了。

第六步:测试环境

mim download mmdet --config rtmdet_tiny_8xb32-300e_coco --dest .

下载将需要几秒钟或更长时间,这取决于你的网络环境。完成后,你会在当前文件夹中发现两个文件 rtmdet_tiny_8xb32-300e_coco.py 和 rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth。

如果你通过源码安装的 MMDetection,那么直接运行以下命令进行验证:

python demo/image_demo.py demo/demo.jpg rtmdet_tiny_8xb32-300e_coco.py --weights rtmdet_tiny_8xb32-300e_coco_20220902_112414-78e30dcc.pth --device cpu

在这里插入图片描述
你会在当前文件夹中的 outputs/vis 文件夹中看到一个新的图像 demo.jpg,图像中包含有网络预测的检测框。
在这里插入图片描述

第七步:训练-目标检测

下载目标检测mmyolo:https://github.com/open-mmlab/mmyolo
这个里面的yolo系列更全

7.1 准备数据集

Cat 数据集是由 144 张图片组成的单类数据集(原始图片由 @RangeKing 提供,并由 @PeterH0323 清理),其中包含训练所需的注释信息。示例图像如下所示:
在这里插入图片描述您可以通过以下命令直接下载并使用它:
python tools/misc/download_dataset.py --dataset-name cat --save-dir data/cat --unzip --delete
此数据集使用以下目录结构自动下载到 dir:data/cat
在这里插入图片描述

7.2 检查数据集

检查标签是否有问题

修改 tools/analysis_tools/browse_coco_json.py --img-dir ../misc/data/cat/images --ann-file ../misc/data/cat/annotations/annotations_all.json

在这里插入图片描述

7.3 训练网络

以 YOLOv5 算法为例,考虑到用户的 GPU 内存有限,我们需要修改一些默认的训练参数,使其流畅运行。需要修改的关键参数如下:

  • YOLOv5 是一种基于锚点的算法,不同的数据集需要自适应地计算合适的锚点
  • 默认配置使用 8 个 GPU,每个 GPU 的批大小为 16 个。现在将其更改为批处理大小为 12 的单个 GPU。
  • 默认训练周期为 300。将其更改为 40 纪元
  • 鉴于数据集很小,我们选择使用固定的主干权重
  • 原则上,当批量大小发生变化时,学习率应相应地线性缩放,但实际测量发现这不是必需的

在文件夹中创建一个配置文件(我们提供了这个配置供您直接使用),并将以下内容复制到配置文件中。yolov5_s-v61_fast_1xb12-40e_cat.pyconfigs/yolov5

_base_ = 'yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py'data_root = 'misc/data/cat/'
class_name = ('cat', )
num_classes = len(class_name)
metainfo = dict(classes=class_name, palette=[(20, 220, 60)])anchors = [[(68, 69), (154, 91), (143, 162)],  # P3/8[(242, 160), (189, 287), (391, 207)],  # P4/16[(353, 337), (539, 341), (443, 432)]  # P5/32
]max_epochs = 40
train_batch_size_per_gpu = 12
train_num_workers = 4load_from = 'https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth'  # noqamodel = dict(backbone=dict(frozen_stages=4),bbox_head=dict(head_module=dict(num_classes=num_classes),prior_generator=dict(base_sizes=anchors)))train_dataloader = dict(batch_size=train_batch_size_per_gpu,num_workers=train_num_workers,dataset=dict(data_root=data_root,metainfo=metainfo,ann_file='annotations/trainval.json',data_prefix=dict(img='images/')))val_dataloader = dict(dataset=dict(metainfo=metainfo,data_root=data_root,ann_file='annotations/test.json',data_prefix=dict(img='images/')))test_dataloader = val_dataloader_base_.optim_wrapper.optimizer.batch_size_per_gpu = train_batch_size_per_gpuval_evaluator = dict(ann_file=data_root + 'annotations/test.json')
test_evaluator = val_evaluatordefault_hooks = dict(checkpoint=dict(interval=10, max_keep_ckpts=2, save_best='auto'),# The warmup_mim_iter parameter is critical.# The default value is 1000 which is not suitable for cat datasets.param_scheduler=dict(max_epochs=max_epochs, warmup_mim_iter=10),logger=dict(type='LoggerHook', interval=5))
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
# visualizer = dict(vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')]) # noqa

然后修改tools/train.py。主要修改config就行了

    parser.add_argument('--config', default="../configs/yolov5/yolov5_s-v61_fast_1xb12-40e_cat.py", help='train config file path')

报错需要安装pip install albumentations -i https://pypi.tuna.tsinghua.edu.cn/simple 和pip install prettytable -i https://pypi.tuna.tsinghua.edu.cn/simple
安装完运行后成功训练:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/125139.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务[Nacos]

CAP 1)一致性(Consistency) (所有节点在同一时间具有相同的数据) 2)可用性(Availability)(保证每个请求不管成功或者失败都有响应) 3)分区容错(Partition tolerance)(系统中任意信息的丢失或失败不会影响系统的继续运作) 一、虚拟机镜像准备 …

Tomcat 安装

1.关闭防火墙 2.安装JDK包 3. 4。添加环境变量 5.刷新配置文件 6.解压文件 7.启动tomcat 8. 9.编写tomcat.service文件 vim /etc/systemd/system/tomcat.service 10.刷新服务 11.打开浏览器访问:192.168.2.100:8080/,正常可以看到以下界面

Web3.0时代什么时候到来,Web3.0有什么机会?

🏆作者简介,黑夜开发者,CSDN领军人物,全栈领域优质创作者✌,CSDN博客专家,阿里云社区专家博主,2023年6月CSDN上海赛道top4。 🏆数年电商行业从业经验,历任核心研发工程师…

cookies 设置过期时间

1.如何在浏览器中查看cookie过期时间 F12-Application-Cookies可以查看到网页所有设置cookie值, 如果设置了过期时间的cookie是可以看到过期时间的持久cookie(persistent cookie), 没有设置过期时间的是会话cookie(s…

智安网络|面临日益增长的安全威胁:云安全和零信任架构的重要性

随着云计算技术的快速发展和广泛应用,云安全和零信任架构变得愈发重要。在数字化时代,云计算技术得到了广泛的应用和推广。企业和组织借助云服务提供商的强大能力,实现了高效、灵活和可扩展的IT基础设施。然而,随着云环境的快速发…

继承和组合

C中,继承和组合是面向对象编程中的两种重要的代码复用方式。 继承is-a 通常用于描述父子的关系,比如植物-花。 组合has-a通常用于描述整体与部分的关系,比如一个汽车由引擎、轮胎等部件组成。 下面是一个简单的示例来说明继承和组合的使用…

OceanBase 4.1解读:读写兼备的DBLink让数据共享“零距离”

梁长青,OceanBase 高级研发工程师,从事 SQL 执行引擎相关工作,目前主要负责 DBLink、单机引擎优化等方面工作。 沈大川,OceanBase 高级研发工程师,从事 SQL 执行引擎相关工作,曾参与 TPC-H 项目攻坚&#x…

Windows安装单节点Zookeeper

刚学习Dubbo,在Centos7中docker安装的zookeeper3.7.1。然后在启动provider时一直报错,用尽办法也没有解决。然后zookeeper相关的知识虽然以前学习过,但是已经忘记的差不多了。现在学习dubbo只能先降低版本使用了,之后再复习zookee…

2023年高教社杯数学建模国赛C题详细版思路

C 题 蔬菜类商品的自动定价与补货决策 2023年国赛如期而至,为了方便大家尽快确定选题,这里将对C题进行解题思路说明,以分析C题的主要难点、出题思路以及选择之后可能遇到的难点进行说明,方便大家尽快找到C题的解题思路。 难度排…

Notepad++ 的安装及配置

由于电脑重装了Win11系统,干脆重头开始,重新安装每一个软件~~~ 很多博客或者博主都会推荐notepad的官网:https://notepad-plus-plus.org/ 但大家亲自点开就会发现是无响应,如下图 同时,也会有很多博主直接给网盘地址…

微信分账报错1908(请求中含有未在API文档中定义的参数)

开发指引-分账 | 微信支付合作伙伴平台文档中心 问题描述:根据微信分账文档,在下单接口添加是否分账参数后,报错如下 Client error: POST https://api.mch.weixin.qq.com/v3/pay/partner/transactions/jsapi 400 Bad Request {"code…

激光切割机在现代灯具的生产过程中的应用

灯饰在现代家庭装修中承担着举足轻重的角色,随着人类生活水平的提升,对家居用品的要求愈发严格,作为家庭装饰的必备品,灯饰从满足功能性需求转向追求个性化定制需求。 金属本身具有独特的质感,与个性化激光图案相结合&…

开启Clash和系统代理后Chrome无法打开网页但Edge正常

今天早上打开电脑准备摸鱼,发现Chrome打不开网页了。检查Clash正常,切换了节点,依然不行。关闭系统的代理可以解决。不然只提示ERR_TIMED_OUT。 各种研究配置,然后发现Edge却又不受影响。 通过火绒发现Chrome是有连接到7890端口的…

电商类面试问题--01Elasticsearch与Mysql数据同步问题

在实现基于关键字的搜索时,首先需要确保MySQL数据库和ES库中的数据是同步的。为了解决这个问题,可以考虑两层方案。 全量同步:全量同步是在服务初始化阶段将MySQL中的数据与ES库中的数据进行全量同步。可以在服务启动时,对ES库进…

2023年03月 C/C++(八级)真题解析#中国电子学会#全国青少年软件编程等级考试

C/C编程&#xff08;1~8级&#xff09;全部真题・点这里 第1题&#xff1a;最短路径问题 平面上有n个点&#xff08;n<100&#xff09;&#xff0c;每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。 若有连线&#xff0c;则表示可从一个点到达另一个点&#xff…

运维Shell脚本小试牛刀(七):在函数文脚本件中调用另外一个脚本文件中函数|函数递归调用|函数后台执行

运维Shell脚本小试牛刀(一) 运维Shell脚本小试牛刀(二) 运维Shell脚本小试牛刀(三)::$(cd $(dirname $0)&#xff1b; pwd)命令详解 运维Shell脚本小试牛刀(四): 多层嵌套if...elif...elif....else fi_蜗牛杨哥的博客-CSDN博客 Cenos7安装小火车程序动画 运维Shell脚本小试…

Blender中的高级边缘控制和纹理映射

推荐&#xff1a;使用 NSDT场景编辑器 快速搭建3D应用场景 步骤 1 首先&#xff0c;您需要创建一组无阴影材质&#xff0c;每种材质具有不同的颜色&#xff0c;确保您有足够的材质来覆盖模型&#xff0c;而不会有相同的颜色相互重叠。然后&#xff0c;切换到“着色”&#xff…

前端自动化部署,Devops,CI/CD

DevOps 提到 Jenkins&#xff0c;想到的第一个概念就是 CI/CD 在这之前应该再了解一个概念。 DevOps Development 和 Operations 的组合&#xff0c;是一种方法论&#xff0c;并不特指某种技术或者工具。DevOps 是一种重视 Dev 开发人员和 Ops 运维人员之间沟通、协作的流程。…

百度云智大会:科技与创新的交汇点

​ 这次的百度云智大会&#xff0c;可谓是亮点云集—— 发布了包含42个大模型、41个数据集、10个精选应用范式的全新升级千帆大模型平台2.0&#xff0c;发布首个大模型生态伙伴计划&#xff0c;而且也预告了文心大模型4.0的发布&#xff0c;大模型服务的成绩单也非常秀&#x…

2023数学建模国赛E题黄河水沙监测数据分析完整代码分析+处理结果+思路文档

已经写出国赛E题黄河水沙监测数据分析完整代码分析处理结果思路分析&#xff08;30页&#xff09;&#xff0c;包括数据预处理、数据可视化&#xff08;分组数据分布图可视化、相关系数热力图可视化、散点图可视化&#xff09;、回归模型&#xff08;决策树回归模型、随机森林回…