基于RK3588/RK3576+MCU STM32+AI的储能电站电池簇管理系统设计与实现

伴随近年来新型储能技术的高质量规模化发展,储能电站作为新能源领域的重要载体, 旨在配合逐步迈进智能电网时代,满足电力系统能源结构与分布的创新升级,给予相应规模 电池管理系统的设计与实现以新的挑战。同时,电子系统的端云协同设计概念已经十分成熟, 面对储能电站高度安全稳定的长期运行需求,边缘端与云端的功能架构划分需进一步完善, 于边缘端实现高性能运算成为储能电站电池管理系统(Battery Management System, BMS)设计 的创新性嵌入式解决方案。 
本文针对储能电站BMS中电池簇管理单元(Battery Cluster Management Unit, BCMU)展 开研究,详细描述了设计并实现BCMU系统的研发工作内容,重点介绍了边缘计算系统中硬 件、软件与算法的交互适配关系,通过理论研究与实物测试结合的方式证明了系统的实用性 能优势。 
(1)通过总结电池管理系统研究发展现状,分析储能电站总体需求与BMS主要功能, 提出了储能电站管理系统结构方案,聚焦于以AI芯片模组为核心设计BCMU系统及其智能 管理应用,着重探讨了系统硬件电路设计、软件开发方案、基于神经网络实现深度学习预测 荷电状态(State of Charge, SOC)三个方面的研发工作。 
(2)针对BCMU边缘计算管理系统设计,提出基于AI芯片模组设计硬件系统,并划分 为AI核心系统与安全监测系统,配合Linux操作环境与逻辑软件设计开发,实现了电池簇电 压、母线电流与绝缘电阻参数的采样功能,多种类高速数据通信功能,以及深度学习SOC参 数预测功能。重要地,本文创新性提出应用稀疏Transformer-LSTM嵌入神经网络模型,部署 于AI芯片模组集成神经网络处理单元(Neural-Network Processing Unit, NPU)以轻量化加速神 经网络运算,降低大数据驱动融合网络运算资源消耗,提升嵌入式系统边缘计算效率。 
(3)面向系统设计实现功能进行实验测试,针对安全监测系统参数采样功能,实验证实 在千伏储能电站电池簇实际应用中电压电流采样误差约为1% F.S,在本文设定绝缘电阻告警 阈值附近相对采样误差约为1.5%,在故障阈值附近约为0.5%;针对AI核心系统边缘端深度 学习预测SOC参数,设计实验分别从神经网络模型方案与嵌入式边缘计算方案两个角度重点 分析了BCMU基于融合神经网络嵌入式系统运算的精度、误差与资源消耗,每个时间戳小于 等于9ms的平均运算时间与较低的MAE与RMSE指标在一定程度上体现了系统性能优势, 实现了数据驱动深度学习SOC预测向边缘计算转移,推动人工智能电池管理技术的大数据化 发展,符合储能电站管理技术优化趋势。

系统总体方案设计 
针对储能电站庞大且复杂的电池系统构架,需设计电站总体管理系统结构并按层次推进, 明确各层次系统需求与功能,保障电站安全稳定运行,着重攻克边缘端AI应用设计难点。 本章作为后续章节中储能电站总体管理系统内部电池簇管理单元即BCMU完整设计的前期 准备工作,从功能需求与方案可行性出发,首先提出了储能电站总体管理系统结构方案,针 对电池簇边缘端智能管理目标,聚焦于以AI芯片模组为核心的系统整体在BCMU边缘端的 AI应用,以及基于神经网络实现深度学习SOC参数估计的工作重心,着重探讨了硬件、软 件和算法于边缘计算系统中的交互适配,提出了设计方案与简要设计过程。 
2.1 总体需求分析 
在电池管理系统领域中,储能电站由于相比于动力电池组等其他小型储能系统,具备较 高的安全稳定需求,较长的待机运行时间,特殊的高峰低谷用电策略以及电网端辅助建设等 特性,涉及电站总体管理系统需求较为复杂,需要根据不同种类需求完成相应的系统功能分 析,故本文总结储能电站需求、电站总体管理系统需求与相应功能描述,如表2.1所示。

2.3 基于AI芯片模组的系统设计 
本文目的在于探索储能电站总体管理系统结构方案中BCMU边缘端AI应用,具体来讲, 需要以AI芯片模组为核心设计系统,实现对于储能电站电池簇的安全检测监控,并且基于 神经网络完成深度学习算法部署。智能管理系统需要充分发挥硬件系统低功耗高性能特性, 为复杂软件算法提供强大的并行计算和神经网络加速能力;实现高度系统集成化,整合多核 处理器、多种类接口与通信模块外设,简化硬件结构连接和系统构架;需具备可扩展性,支 持多种通信协议和接口,便于与其他系统交互通信,发挥其灵活性和可操作性。 
本节将首先介绍AI芯片模组选型,随后描述了BCMU系统的硬件与软件方案设计内容, 以说明以AI芯片模组为核心的BCMU系统融合了上文中提到的针对储能电站的智能管理技 术优势,最终实现搭建总体系统结构方案中BCMU边缘计算智能管理系统。  2.3.1 AI芯片模组介绍与选型 
AI芯片模组在边缘计算场景中涵盖了实时监测控制、故障诊断与维护、数据分析与决策 支持等功能,能够将计算、存储与数据处理等功能集成于靠近数据源的边缘设备上进行,以 实现更加快速精准地处理与响应,降低系统运行的工作延迟,提高整体性能和效率。在储能 电站BCMU应用中,AI芯片模组将会成为深度学习计算平台,部署神经网络模型,以实现 实时精准预测电池SOC参数。AI芯片模组RK3588封装实物如图2.2所示。 

AI芯片模组RK3588内部集成ARM架构八核64位中央处理器(Central Processing Unit,  CPU),大小核结构分别为四核Cortex-A76与四核Cortex-A55以及单独扩展结构NEON协处 理器。重要地,芯片内部集成嵌入神经网络处理单元(Neural-Network Processing Unit, NPU), 针对神经网络模型包含矩阵乘法、卷积操作与激活函数等运算,及其大规模并行计算需求, NPU拥有性能高度优化的精简指令集以及定制化的集成电路硬件加速运算设计,支持int16、 FP16与TF32等数据类型的混合运算。NPU单核架构如图2.3所示。 

2.3.2 系统硬件电路设计 
针对储能电站总体管理系统结构方案中BCMU边缘端AI应用,根据上文中系统的需求 分析以及详细功能描述,BCMU硬件系统需要AI芯片模组适配硬件系统以实现处理器运算 存储操作,配置外部接口电路以实现数据通信交互,并且需要负责实时监测高压电池簇端总 电压、充放电母线电流以及绝缘电阻数据,设置数据收发系统实现上下层管理系统交互通信。 故设计BCMU硬件系统主要分为两个组成部分,分别为以AI芯片模组为核心的硬件系统与 安全监测硬件系统,整体BCMU硬件系统框图如图2.4所示。 

AI芯片模组核心硬件系统,于BCMU硬件系统组成中负责边缘端AI应用参数预测估计 与高速数据通信交互。其以AI芯片模组RK3588为主处理器芯片,集成多核CPU管理运算、 通信与显示等多种类任务进程,集成NPU执行加速神经网络模型运算以深度学习实现SOC 参数预测估计。电源管理模块用于设置多核处理器与外设上下电时序与电压标准,通过电源 管理芯片PMIC保持输入电压电流稳定,控制硬件系统功耗。外部存储应用DDR存储颗粒 与eMMC快闪存储器保存程序代码与启动管理。外部接口启动USB与以太网等通信方式, 用于数据传输的接口电路模块需要在系统进行SOC参数预测时不断更新原始数据,并且将估 计结果传输至储能电站管理系统各层次。HDMI显示模块连接显示屏幕用于系统操作与编程 显示功能实现。 
安全监测系统,于BCMU硬件系统组成中负责保障电池簇安全稳定运行。以意法半导体 STMicroelectronics公司MCU型号STM32G473作为主处理器芯片。应用其内部集成FDCAN 控制器,支持数据段通信可变速率传输,以实现电站管理系统不同层次间的快速数据通信, 应用集成串行接口UART协议供给系统调试通信应用,应用GPIO输出高低电平,场效应管 实现电平转换以控制接触器通断,系统需要与通信模块交互配合实现运行状态下的通信接收充放电信息并且稳定控制接触器,以及紧急状况下强制断开接触器等操作。系统硬件外设模 块包含FDCAN通信模块,电压电流传感器模块与绝缘电阻检测模块,FDCAN协议通信需 要通过收发器将控制器传输的总线物理层信号与总线差分电平进行转换,以配置电平逻辑; 传感器模块通过电压与电流霍尔传感器,配合MCU集成ADC完成电池簇总电压与充放电母 线电流数据采集;绝缘电阻检测模块需得到电池簇总电压数据,设计添加电阻支路分压得到 电池簇正负极对于零电位外壳的相对电阻值,过低时易造成短路需要及时告警。  2.3.3 系统软件方案设计 
针对储能电站总体管理系统结构方案中BCMU边缘端AI应用,根据上文中描述的硬件 系统为基础进行系统软件方案设计,包含AI芯片模组核心系统的控制、通信与运算,以及 安全监测与告警逻辑等软件程序,系统软件方案框图如图2.5所示。

AI芯片模组核心系统,设计使用Linux操作系统以实现配置嵌入式系统管理(Embedded  System Management, ESM),通过调用设备驱动程序中实现IO通道管理的IOCTL函数,映射 自定义内核驱动程序,创建接口以访问ESM。软件环境开发需根据原厂系统镜像完成相应功 能的节点裁剪,得到符合系统模块的设备树,本文设计保留DDR与eMMC存储节点、HDMI 显示节点、USB与以太网传输节点等。重要地,以AI芯片模组内嵌NPU加速神经网络深度 运算为基础,需要不断调整超参数以完成神经网络训练步骤,得到符合储能电站电池特性的 网络模型,利用模型转换软件于BCMU边缘端部署模型,在系统暂存电压、电流、温度与内 阻等电池单体参数后传输至NPU,通过其部署模型深度学习预测SOC参数。 
安全监测系统,设计配置独立看门狗IWDG,根据低速时钟源频率设置计数器溢出时间, 通过配置相关寄存器完成系统死机重启处理器复位,避免系统因为程序卡死而停止数据采集 与紧急危险控制操作,因而失去安全保护功能。充放电通断控制需要系统接收通信模块下发 充放电开始或结束指令,通过配置GPIO输出高低电平控制接触器通断,同时系统写入软件逻辑,当接收错误或危险告警与系统判断参数异常危险时,强制执行断开充放电母线接触器。 传感器模块以及绝缘电阻检测模块需要芯片内置ADC与DMA控制器参与,配置ADC特定 通道,确定精度、分辨率与不同采样模式,应用DMA控制直接读取处理器内存,达到实时 参数采集的目的。通信模块应用芯片串口UART与FDCAN协议,串口通信用于上位机烧录 程序与调试功能等,FDCAN协议中的不同数据类型需要手动编码,完成BCMU与储能电站 管理系统不同层次系统间的数据传输与命令收发。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12586.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【HarmonyOS之旅】基于ArkTS开发(二) -> UI开发三

目录 1 -> 绘制图形 1.1 -> 绘制基本几何图形 1.2 -> 绘制自定义几何图形 2 -> 添加动画效果 2.1 -> animateTo实现闪屏动画 2.2 -> 页面转场动画 3 -> 常见组件说明 1 -> 绘制图形 绘制能力主要是通过框架提供的绘制组件来支撑,支…

【算法】经典博弈论问题——威佐夫博弈 python

目录 威佐夫博弈(Wythoff Game)【模板】 威佐夫博弈(Wythoff Game) 有两堆石子,数量任意,可以不同,游戏开始由两个人轮流取石子 游戏规定,每次有两种不同的取法 1)在任意的一堆中取走任意多的石子 2)可以在两堆中同时取走相同数量…

通过Redisson构建延时队列并实现注解式消费

目录 一、序言二、延迟队列实现1、Redisson延时消息监听注解和消息体2、Redisson延时消息发布器3、Redisson延时消息监听处理器 三、测试用例四、结语 一、序言 两个月前接了一个4万的私活,做一个线上商城小程序,在交易过程中不可避免的一个问题就是用户…

第一个Qt开发实例(一个Push Button按钮和两个Label)【包括如何在QtCreator中创建新工程、代码详解、编译、环境变量配置、测试程序运行等】

目录 Qt开发环境QtCreator的安装、配置在QtCreator中创建新工程在Forms→mainwindow.ui中拖曳出我们要的图形按钮查看拖曳出按钮后的代码为pushButton这个图形添加回调函数编译工程关闭开发板上QT的GUI(选做)禁止LCD黑屏(选做)设置Qt运行的环境变量运行Qt程序如何让程序在系统启…

Spring Security(maven项目) 3.0.3.0版本

前言: 通过实践而发现真理,又通过实践而证实真理和发展真理。从感性认识而能动地发展到理性认识,又从理性认识而能动地指导革命实践,改造主观世界和客观世界。实践、认识、再实践、再认识,这种形式,循环往…

携程Java开发面试题及参考答案 (200道-上)

说说四层模型、七层模型。 七层模型(OSI 参考模型) 七层模型,即 OSI(Open System Interconnection)参考模型,是一种概念模型,用于描述网络通信的架构。它将计算机网络从下到上分为七层,各层的功能和作用如下: 物理层:物理层是计算机网络的最底层,主要负责传输比特流…

【Rust自学】16.4. 通过Send和Sync trait来扩展并发

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 16.4.1. Send和Sync trait Rust语言本身的并发特性较少,目前所提及的并发特性都来自于标准库,而不是语言本身。其…

MYSQL面试题总结(题目来源JavaGuide)

MYSQL基础架构 问题1:一条 SQL语句在MySQL中的执行过程 1. 解析阶段 (Parsing) 查询分析:当用户提交一个 SQL 语句时,MySQL 首先会对语句进行解析。这个过程会检查语法是否正确,确保 SQL 语句符合 MySQL 的语法规则。如果发现…

传输层协议——TCP协议

文章目录 🍍TCP协议谈谈可靠性TCP协议格式序号与确认序号窗口大小六个标志位 确认应答机制(ACK)超时重传机制连接管理机制三次握手四次挥手 流量控制滑动窗口拥塞控制延迟应答捎带应答面向字节流粘包问题TCP异常情况TCP小结基于TCP的应用层协…

pycharm(2)

conda 我下载安装conda的时候产生了各种问题,最终我发现,打开杀毒软件会有阻碍 cuda的版本问题很大,我尝试多个版本之后,发现anaconda3-2024.06.1-windows-x86_64安装了之后不会报错,另外pycharm的版本也一直有问题&a…

python算法和数据结构刷题[3]:哈希表、滑动窗口、双指针、回溯算法、贪心算法

回溯算法 「所有可能的结果」,而不是「结果的个数」,一般情况下,我们就知道需要暴力搜索所有的可行解了,可以用「回溯法」。 回溯算法关键在于:不合适就退回上一步。在回溯算法中,递归用于深入到所有可能的分支&…

【PyQt】pyqt小案例实现简易文本编辑器

pyqt小案例实现简易文本编辑器 分析 实现了一个简单的文本编辑器,使用PyQt5框架构建。以下是代码的主要功能和特点: 主窗口类 (MyWindow): 继承自 QWidget 类。使用 .ui 文件加载用户界面布局。设置窗口标题、状态栏消息等。创建菜单栏及其子菜单项&…

鼠标拖尾特效

文章目录 鼠标拖尾特效一、引言二、实现原理1、监听鼠标移动事件2、生成拖尾元素3、控制元素生命周期 三、代码实现四、使用示例五、总结 鼠标拖尾特效 一、引言 鼠标拖尾特效是一种非常酷炫的前端交互效果,能够为网页增添独特的视觉体验。它通常通过JavaScript和C…

Node.js与嵌入式开发:打破界限的创新结合

文章目录 一、Node.js的本质与核心优势1.1 什么是Node.js?1.2 嵌入式开发的范式转变 二、Node.js与嵌入式结合的四大技术路径2.1 硬件交互层2.2 物联网协议栈2.3 边缘计算架构2.4 轻量化运行时方案 三、实战案例:智能农业监测系统3.1 硬件配置3.2 软件架…

利用Vue和javascript分别编写一个“Hello World”的定时更新

目录 一、利用Vue编写一个“Hello World”的定时更新(1)vue编码在Html文件中(2)vue编码在js文件中 二、利用javascript编写一个“Hello World”的定时更新 一、利用Vue编写一个“Hello World”的定时更新 (1&#xff…

排序算法--插入排序

插入排序是一种简单且稳定的排序算法&#xff0c;适合小规模数据或部分有序数据。 // 插入排序函数 void insertionSort(int arr[], int n) {for (int i 1; i < n; i) { // 从第二个元素开始int key arr[i]; // 当前需要插入的元素int j i - 1;// 将比 key 大的元素向后移…

跟李沐学AI:视频生成类论文精读(Movie Gen、HunyuanVideo)

Movie Gen&#xff1a;A Cast of Media Foundation Models 简介 Movie Gen是Meta公司提出的一系列内容生成模型&#xff0c;包含了 3.2.1 预训练数据 Movie Gen采用大约 100M 的视频-文本对和 1B 的图片-文本对进行预训练。 图片-文本对的预训练流程与Meta提出的 Emu: Enh…

CH340G上传程序到ESP8266-01(S)模块

文章目录 概要ESP8266模块外形尺寸模块原理图模块引脚功能 CH340G模块外形及其引脚模块引脚功能USB TO TTL引脚 程序上传接线Arduino IDE 安装ESP8266开发板Arduino IDE 开发板上传失败上传成功 正常工作 概要 使用USB TO TTL&#xff08;CH340G&#xff09;将Arduino将程序上传…

游戏引擎 Unity - Unity 下载与安装

Unity Unity 首次发布于 2005 年&#xff0c;属于 Unity Technologies Unity 使用的开发技术有&#xff1a;C# Unity 的适用平台&#xff1a;PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域&#xff1a;开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…

AIGC(生成式AI)试用 20 -- deepseek 初识

>> 基本概念 Ollama -- 运行大模型&#xff0c;管理运行AI大模型的工具&#xff0c;用来安装布置DeepSeek https://ollama.com/ , Get up and running with large language models. AnythingLLM -- 大模型增强应用&#xff0c;GUI大模型交互程序 Download AnythingLLM …