OpenCV(二十一):椒盐噪声和高斯噪声的产生

目录

1.图像噪声介绍

2.椒盐噪声的产生

3.高斯噪声的产生


1.图像噪声介绍

噪声介绍

     图像噪声是指在图像中存在的不期望的、随机的像素值变化,这些变化来源于多种因素。噪声可能导致图像细节模糊、失真或难以分辨。

以下是几种常见的图像噪声类型:

      1.椒盐噪声:又被称作脉冲噪声,它会随机改变图像中的像素值,是由相机成像、图像传输、解码处理等过程产生的黑白相间的亮暗点噪声。

     2. 高斯噪声:高斯噪声是指噪声分布的概率密度函数服从高斯分布(正态分布)的一类噪声。

2.椒盐噪声的产生

椒盐噪声生成的步骤:

  • Step1:确定添加椒盐噪声的位置。
  • Step2:确定噪声的种类。
  • Step3:修改图像像素灰度值。
  • Step4:得到含有椒盐噪声的图像。

 由于椒盐噪声是随机产生的,所以我们要使用opencv中能够产生 随机数的函数,有下面两个:

1.rand_double()

double cvflann::rand_double ( double high=1.0,

double low = 0

)

2.rand_int()

int cvflann::rand_int ( int high =RAND MAX,

int low = 0

)

由于图像像素中的数据都是整数,并且产生的椒盐噪声的数据是0或者255的整数,我们主要使用rand_int()这个函数。

       在OpenCV中,可以使用cv::Mat类和随机数生成函数rand_int()来模拟生成椒盐噪声。下面是一个示例代码,展示如何在图像中添加椒盐噪声:


#include <opencv2/opencv.hpp>
#include <iostream>using namespace cv;
using namespace std;//图像添加椒盐噪声函数
void saltAndPepper(Mat image,int n){for(int k=0;k<n/2;k++){//随机确定图像中的位置int i,j;i=cvflann::rand_int()%image.cols;//取余数运算,保证在图像的列数内j=cvflann::rand_int()%image.rows;//取余数运算,保证在图像的行数内int write_black=rand()%2;//判断为白色噪声还是黑色噪声的变量if(write_black==0)//添加白色噪声{if(image.type()==CV_8UC1){image.at<uchar>(j,i)=255;//白色噪声}else if(image.type()==CV_8UC4)//处理彩色图片{image.at<Vec4b>(j,i)[0]=255;//Vec4b为opencv定义的一个3个值的向量类型,指定通道,B:0 G:1 R:2image.at<Vec4b>(j,i)[1]=255;image.at<Vec4b>(j,i)[2]=255;image.at<Vec4b>(j,i)[3]=255;}}else{//添加黑色噪声if(image.type()==CV_8UC1){image.at<uchar>(j,i)=0;//白色噪声}else if(image.type()==CV_8UC4)//处理彩色图片{image.at<Vec4b>(j,i)[0]=0;//Vec4b为opencv定义的一个3个值的向量类型,指定通道,B:0 G:1 R:2image.at<Vec4b>(j,i)[1]=0;image.at<Vec4b>(j,i)[2]=0;image.at<Vec4b>(j,i)[3]=0;}}}
}
//椒盐噪声
void Saltandpepper_noise(Mat image){Mat gray;cvtColor(image,gray,COLOR_BGR2GRAY);imwrite("/sdcard/DCIM/image.png",image);//展示原图imwrite("/sdcard/DCIM/gray.png",gray);saltAndPepper(image,10000);//彩色图像添加椒盐噪声saltAndPepper(gray,10000);//灰度图像添加椒盐噪声imwrite("/sdcard/DCIM/image_saltAndPepper.png",image);imwrite("/sdcard/DCIM/gray_saltAndPepper.png",gray);}

在上面的代码中,首先包含了OpenCV的头文件<opencv2/opencv.hpp>。然后,定义了一个名为SaltAndPepper()的函数,用于向图像中添加椒盐噪声。

该函数使用cvflann::rand_int()函数生成随机数,并根据给定的噪声比例计算添加噪声的像素数量。接着,在图像中随机选择这些像素,并将其值设置为黑色(0)或白色(255),从而模拟生成椒盐噪声。

在Saltandpepper_noise函数中,读取了原始图像,并调用SaltAndPepper()函数来添加椒盐噪声。然后,使用cv::imwrite()显示带有噪声的图像。

       

         灰度图像                                           灰度图像添加椒盐噪声

    

            彩色图像                                           彩色图像添加椒盐噪声

请注意,在示例代码中,假设待处理的图像是8位无符号整型单通道灰度图像(CV_8UC1)或4通道彩色图像(CV_8UC4)。如果处理的图像类型不同,需要相应地修改代码。

3.高斯噪声的产生

高斯噪声生成的步骤:

Step1:创建一个与图像尺寸、数据类型以及通道数相同的Mat类变量。

Step2:在Mat类变量中产生符合高斯分布的随机数。

Step3:将原图像和含有高斯分布的随机数矩阵相加。

Step4:得到添加高斯噪声的图像。

在OpenCV中,RNG::fill()是一个用于填充数组或矩阵的函数,它可以生成指定分布的随机数,并将其存储在指定的数据结构中。该函数的签名如下:

void cv::RNG::fill ( InputOutputArray mat,

int     distType,

InputArray   a,

InputArray     b,

bool     saturateRange = false

)

  • mat:用于存放随机数的矩阵,目前只支持低于5通道的矩阵。
  • distType:指定生成随机数分布的类型,可以是以下值之一:
    • RNG::UNIFORM:均匀分布
    • RNG::NORMAL:正态分布(高斯分布)
  • a:生成分布所需的参数之一。对于均匀分布,它表示随机数的下界;对于正态分布,它是均值。
  • b:生成分布所需的参数之二。对于均匀分布,它表示随机数的上界;对于正态分布,它是标准差。
  • saturateRange:一个可选的布尔值,如果为true,则将生成的随机数截断到输出数组或矩阵的数据类型的有效范围内。

在OpenCV中,可以使用随机数生成函数和高斯分布函数来模拟生成高斯噪声。下面是一个示例代码,展示如何在图像中添加高斯噪声:

//高斯噪声
void Gaussian_noise(Mat image){Mat gray;cvtColor(image,gray,COLOR_BGR2GRAY);Mat image_noise=Mat::zeros(image.rows,image.cols,image.type());Mat gray_noise=Mat::zeros(gray.rows,gray.cols,gray.type());imwrite("/sdcard/DCIM/image.png",image);//展示原图imwrite("/sdcard/DCIM/gray.png",gray);RNG rng;//创建一个RNG类rng.fill(image_noise,RNG::NORMAL,10,20);//生成三通道的高斯分布随机数rng.fill(gray_noise,RNG::NORMAL,15,30);imwrite("/sdcard/DCIM/image_noise.png",image_noise);//三通道的高斯噪声imwrite("/sdcard/DCIM/gray_noise.png",gray_noise);//单通道的高斯噪声image=image+image_noise;//在彩色图像中添加高斯噪声gray=gray+gray_noise;//在灰度图像中添加高斯噪声//显示添加高斯噪声后的图像imwrite("/sdcard/DCIM/image_Gaussian.png",image);imwrite("/sdcard/DCIM/gray_Gaussian.png",gray);
}

这段示例代码演示了如何生成高斯噪声,并将其添加到彩色图像和灰度图像中。

首先,代码使用cvtColor函数将输入的彩色图像转换为灰度图像,并创建了grayimage变量来存储结果。

接下来,代码创建了两个空白图像:image_noisegray_noise,它们与输入图像和灰度图像具有相同的尺寸和类型。这些图像将用于存储生成的高斯噪声。

然后,代码利用RNG类创建了一个随机数生成器对象rng

通过调用rng.fill()函数,代码将生成服从高斯分布的随机数填充到image_noisegray_noise中。第一个参数是要填充的图像,第二个参数RNG::NORMAL表示生成的随机数应符合正态分布。第三个和第四个参数分别表示高斯分布的均值和标准差,这里分别为10和20(对于image_noise)以及15和30(对于gray_noise)。这些值可以根据需要进行调整。

之后,代码使用imwrite函数将原始图像、灰度图像、生成的高斯噪声图像保存到指定路径,将结果可视化。

最后,代码将高斯噪声添加到输入的彩色图像和灰度图像中,通过对应的像素相加。结果图像被保存并可视化。

      

           灰度图像                                               灰度图像添加高斯噪声

       

      彩色图像                                           彩色图像添加高斯噪声

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/126358.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

javascritp如何判断是从刷新(重新加载)、正常打开(或链接打开)、还是从浏览器回退进入页面的

重点先下另外一个知识点&#xff1a; 当我们的Web站点采用主体页面的iframe导航各个子页面&#xff08;浏览器地址保持不变&#xff09;的情况&#xff0c;如果我们希望每次iframe中打开的新的子页面&#xff0c;也都能够像在不采用iframe的情况那样&#xff0c;后续能够在浏览…

Tailwind 练手项目

Tailwind 练手项目 用到的技巧 Tailwind CSS 速成 应该都提过了&#xff0c;我不记得这里有什么特别新的知识 整体完成图大概这样&#xff1a; 一个纯静态页面&#xff0c;没有做 JS 之类的特效&#xff0c;不过做了移动端适配&#xff0c;说实话我写到一半的时候改了不少………

易云维®医院后勤管理系统软件利用物联网智能网关帮助实现医院设备实现智能化、信息化管理

近年来&#xff0c;我国医院逐渐意识到医院设备信息化管理的重要性&#xff0c;逐步建立医院后勤管理系统软件&#xff0c;以提高信息化管理水平。该系统是利用数据库技术&#xff0c;为医院的中央空调、洁净空调、电梯、锅炉、医疗设备等建立电子档案&#xff0c;把设备监控、…

mysql 安全加固

PS&#xff1a;之前在做安全测试的时候&#xff0c;报告mysql有安全漏洞&#xff0c;于是研究了下如何修复&#xff0c;于是记录下来分享给大家 1.1修改mysql 存放位置 修复 1.停服务 service mysqld stop2.迁位置 2.1 新建迁移目录 mkdir /home/database2.2 迁移数据文件…

【业务功能篇96】微服务-springcloud-springboot-认证服务-登录注册功能-Auth2.0-分布式session

5.登录功能 通过最基础的登录操作来完成登录处理 登录页面处理 认证服务的处理 /*** 注册的方法* return*/PostMapping("/login")public String login(LoginVo loginVo , RedirectAttributes redirectAttributes){R r memberFeginService.login(loginVo);if(r.getC…

数据结构:线性表之-单向链表(无头)

目录 什么是单向链表 顺序表和链表的区别和联系 顺序表&#xff1a; 链表&#xff1a; 链表表示(单项)和实现 1.1 链表的概念及结构 1.2单链表(无头)的实现 所用文件 将有以下功能&#xff1a; 链表定义 创建新链表元素 尾插 头插 尾删 头删 查找-给一个节点的…

(二十二)大数据实战——Flume数据采集之故障转移案例实战

前言 本节内容我们完成Flume数据采集的故障转移案例&#xff0c;使用三台服务器&#xff0c;一台服务器负责采集nc数据&#xff0c;通过使用failover模式的Sink处理器完成监控数据的故障转移&#xff0c;使用Avro的方式完成flume之间采集数据的传输。整体架构如下&#xff1a;…

OpenCV 01(图像加载与显示)

一、机器视觉 现在说的机器视觉(Machine Vision)一般指计算机视觉(Computer Vision), 简单来说就是研究如何使机器看懂东西。就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉&#xff0c;并进一步做图形处理&#xff0c;使电脑处理成为更适合人眼观察或传…

VS编译.cu文件源文件无法打开matrix.h和mex.h问题

配置好cu和VS相关库文件后CUDA程序仍然报错&#xff1a;无法打开matrix.h和mex.h&#xff0c;解决办法&#xff1a; &#xff08;1&#xff09;这两个头文件是matlab中的&#xff0c;可能无法直接在VS中调用&#xff0c;可以通过添加外部依赖项的方法将matlab中的头文件的文件路…

1600*C. Maximum Set

解析&#xff1a; 尽可能的增大集合内的数&#xff0c;所以倍数要尽可能的小&#xff0c;所以让最小的数不断乘 2&#xff0c;即可找到最大的数量。 所以&#xff0c;每次计算 k log2&#xff08; y / x &#xff09;,这样可得出最小的 x&#xff0c;乘多少个 2&#xff0c;能…

VS Code断点调式Cesium

1.在VS Code中安装Debugger for Firefox插件 2.下载安Firefox Developer Edition 3. 创建launch.json 编辑并保存launch.json {// Use IntelliSense to learn about possible attributes.// Hover to view descriptions of existing attributes.// For more information, vis…

MJDK 如何实现压缩速率的 5 倍提升?

MJDK 是基于 OpenJDK 构建的美团 JDK 发行版。本文主要介绍 MJDK 是如何在保障 java.util.zip.* API 及压缩格式兼容性的前提下&#xff0c;实现压缩/解压缩速率提升 5-10 倍的效果。希望相关的经验能够帮助到更多的技术同学。 1 前言 数据压缩技术[1]因可有效降低数据存储及…

strerror函数

目录 strerror 函数介绍&#xff1a; 举例&#xff1a; 使用案例&#xff1a; 优化&#xff1a; perror&#xff1a; strerror 函数介绍&#xff1a; 函数声明&#xff1a; char * strerror ( int errnum );头 文 件&#xff1a;#include <string.h>返 回 值&a…

01_前端css编写的三种方式

前言 CSS的引入方式共有三种&#xff1a;行内样式、内部样式表、外部样式表 一、内联式引入 用法&#xff1a; 在元素上直接通过style属性进行设置css样式设置 示例&#xff1a; <h1 style"color:red;">style属性的应用</h1> <p style"font-si…

hive指定字段插入数据,包含了分区表和非分区表

1、建表 语句如下&#xff1a; CREATE EXTERNAL TABLE ods_lineitem_full (l_shipdate date,l_orderkey bigint,l_linenumber int,l_partkey int,l_suppkey int,l_quantity decimal(15, 2),l_extendedprice decimal(15, 2),l_discount de…

数据结构-第一期——数组(Python)

目录 00、前言&#xff1a; 01、一维数组 一维数组的定义和初始化 一维变长数组 一维正向遍历 一维反向遍历 一维数组的区间操作 竞赛小技巧&#xff1a;不用从a[0]开始&#xff0c;从a[1]开始 蓝桥杯真题练习1 读入一维数组 例题一 例题二​ 例题三 实战训…

每日刷题|回溯法解决全排列问题第二弹之解决字符串、字母大小排列问题

食用指南&#xff1a;本文为作者刷题中认为有必要记录的题目 前置知识&#xff1a;回溯法经典问题之全排列 ♈️今日夜电波&#xff1a;带我去找夜生活—告五人 0:49 ━━━━━━️&#x1f49f;──────── 4:59 …

安科瑞铁塔基站能耗监控解决方案

安科瑞 华楠 1 背景概述 5G发展&#xff0c;基站先行。5G基站的选址建设&#xff0c;是保证5G信号覆盖的基础&#xff0c;因此5G基站建设是5G产业布局的一部分&#xff0c;也是5G成熟的基础。 2G、3G、4G均是低频段信号传输&#xff0c;宏基站几乎能应付所有的信号覆盖。但由…

SpringMVC入门详细介绍

一. SpringMVC简介 Spring MVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架&#xff0c;通过把Model&#xff0c;View&#xff0c;Controller分离&#xff0c;将web层进行职责解耦&#xff0c;把复杂的web应用分成逻辑清晰的几部分&#xff0c;简化开发&a…

ctfshow 反序列化

PHP反序列化前置知识 序列化和反序列化 对象是不能在字节流中传输的&#xff0c;序列化就是把对象转化为字符串以便存储和传输&#xff0c;反序列化就是将字符串转化为对象 魔术方法 __construct() //构造&#xff0c;当对象new时调用 __wakeup() //执行unserialize()时&am…