Java中如何进行加锁??

笔者在上篇文章介绍了线程安全的问题,接下来本篇文章就是来讲解如何避免线程安全问题~~
前言:创建两个线程,每个线程都实现对同一个变量count各自自增5W次,我们来看一下代码:

class Counter{private int count=0;public void add(){count++;}public int get(){return count;}
}
public class Main2 {public static void main(String[] args) throws InterruptedException{Counter counter=new Counter();//搞两个线程,两个线程分别对这个count自增5W次//线程1Thread t1=new Thread(()->{for (int i = 0; i < 50000; i++) {counter.add();}});//线程2Thread t2=new Thread(()->{for (int i = 0; i < 50000; i++) {counter.add();}});//启动线程t1.start();t2.start();//等待两个线程执行结束,然后看一下结果t1.join();t2.join();System.out.println(counter.get());//预期结果是10W,但是,实际结果像是一个随机值,每次执行的结果都不一样}
}

上述代码的运行结果是不确定的,是一个随即值,多次刷新重新运行,结果大概率是不一样的~,预期效果个代码的运行结果不一样,这就是Bug——》线程安全问题!
通过加锁来有效避免线程安全问题:
Synchronized是Java中的关键字,可以使用这个关键字来实现加锁的效果~

    public void add(){// count++;synchronized (this){//这里的this可以写任意一个Object对象(基本数据类型不可)//此处写了this就相当于Counter counter=new Counter();中的countercount++;}}

那么,我们来看一下此时代码的运行结果~
在这里插入图片描述符合我们预期的一个效果~
锁有两个核心的操作,加锁和解锁;
此处使用代码块的方式来表示:进入synchronized修饰的代码块的时候,就会触发加锁,出了synchronized代码块就会触发解锁,{ }就相当于WC~~
在上述代码中:synchronized(this)——》this是指:锁对象(在针对哪个对象?)!

如果两个线程针对同一个对象加锁,此时就会出现“锁竞争”(一个线程先拿到锁,另一个线程阻塞等待)!
如果两个线程针对不同的对象加锁,此时不好存在锁竞争,各种获取各自锁即可!
加锁本质上是把并发的变成了串行的~

join()和加锁不一样:
join()是让两个线程完整的进行串行~
加锁是让两个线程的某小部分串行了,大部分都是并发的!!

在这里插入图片描述加锁:在保证线程安全的前提下,同时还能够让代码跑的更快一些,更好的利用CPU,无论如何,加锁都可能导致阻塞,代码阻塞对应程序的效率肯定还是会有影响的,此处虽然加锁了,比不加锁要慢点,肯定还是比串行要更快,同时比不加锁算得更准!!
在这里插入图片描述如果直接给方法使用synchronized修饰,此时就相当于this为加锁对象!!
如果synchronized修饰静态方法static(),此时就算不给this加锁了,而是给类对象加锁!!
在这里插入图片描述更常见的还是自己手动指定一个锁对象:

    //自己手动指定锁对象private Object locker=new Object();public void add(){synchronized (locker){//这里的locker可以写任意一个Object对象(基本数据类型不可)count++;}}

要牢记:如果多个线程尝试对同一对象加锁,此时就会产生锁竞争!!针对不同的锁对象加锁,就不会有锁竞争~

另一个线程不安全的场景:由于内存可见性,所引起的线程不安全~
先写一个带有Bug的代码:

import java.util.Scanner;public class Main3 {public static int flag=0;public static void main(String[] args) {Thread t1=new Thread(()->{while (flag==0){//空着,啥都没有}System.out.println("循环结束,t1结束");});Thread t2=new Thread(()->{Scanner scanner=new Scanner(System.in);System.out.println("请输入一个整数: ");flag=scanner.nextInt();});t1.start();t2.start();}
}

对该段代码的预期效果:t1通过flag=0作为条件,进行循环,初始情况下,将进入循环,t2通过控制台输入一个整数,一旦用户输入非0的值,此时t1的循环就会立即结束,从而t1线程退出!!
但是,实际的效果:输入非0的值之后,t1线程并没有退出,循环没有结束!通过jconsole可以看到t1线程仍然在执行,处在RUNNABLE状态。
实际效果 !=预期效果——》这就是Bug
为啥有这个问题??这就是内存可见性的锅!!
所谓的内存可见性,就是多线程环境下,,编辑器对于代码优化产生了误判,从而引起了Bug,进一步导致了咱们的Bug,咱们的处理方式:就是让编辑器针对这个场景暂停优化!!使用Volatile关键字,被volatile修饰的变量,此时编辑器就会紧张上述优化,从而能够确保每次都是从内存中重新读取数据~
即:针对上述代码的更改:

volatile public static int flag=0;

加上volatile关键字之后,此时编辑器就能够保证每次都是重新从内存读取flag变量的值,此时t2修饰flag,t1就可以立即感知到了,因此t1就可以正确退出了~

volatile不保证原子性(注意)
volatile适用的场景是一个线程读,一个线程写的情况
synchronized则是多个线程写

volatile的这个效果称为:“保证内存可见性”
synchronized不确定能不能保证内存可见性

volatile还有一个效果:禁止指令重排序!指令重排序也是编辑器优化的策略(调整了代码执行的顺序,,让程序更高效,前台也是保证整体逻辑不变)

关于volatile和内存可见性的补充~
网上有效资料:线程修改一个变量,会把这个变量先从主内存读取到工作内存,然后修改工作内存的值,再写回到主内存中~
内存可见性:t1频繁读取主内存,效率比较低,就被优化成直接读取自己的工作内存,t1修改了主内存的结果,由于t1没有读取主内存导致修改不能被识别到!!
工作内存《——》CPU寄存器
主内存《——》内存

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/127456.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数学的魅力

数学的魅力 数学的历史古代数学古希腊数学中世纪数学文艺复兴数学 数学的分支1. 代数学2. 几何学3. 微积分学4. 概率论与统计学5. 数论 数学的重要性1. 科学和技术2. 经济学和金融3. 医学和生物学4. 社会科学5. 环境科学 数学的未来1. 人工智能2. 网络安全3. 空间探索 结论 数学…

docker-compose安装nginx

基于docker-compose安装nginx 目录 一、目录结构 1、docker-compose.yml 2、nginx.conf 3、default.conf 4、index.html 二、访问测试 一、目录结构 1、docker-compose.yml version: 3 services:nginx:image: registry.cn-hangzhou.aliyuncs.com/zhengqing/nginx:1.21.1…

单向链表(c/c++)

链表是一种常见的数据结构&#xff0c;其中运用到了结构体指针&#xff0c;链表可以实现动态存储分配&#xff0c;换而言之&#xff0c;链表是一个功能强大的数组&#xff0c;可以在某个节点定义多种数据类型&#xff0c;可以实现任意的添加&#xff0c;删除&#xff0c;插入节…

使用JS实现一个简单的观察者模式(Observer)

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 手撸Observer⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前端领…

2023国赛数学建模E题思路代码 黄河水沙监测数据分析

E题最大的难度是数据处理&#xff0c;可以做一个假设&#xff0c;假设一定时间内流量跟含沙量不变&#xff0c;那么我们可以对数据进行向下填充&#xff0c;把所有的数据进行合并之后可以对其进行展开特性分析&#xff0c;在研究调水调沙的实际效果时&#xff0c;可以先通过分析…

linux下shell脚本实现wordpress搭建

wordpress_auto_install.sh #!/bin/bashuser$(whoami)function wordpress_auto_install () { if [ $user "root" ];thenecho "前提&#xff1a;调整系统配置&#xff0c;如关闭selinux、firewall等&#xff01;"sed -i s/SELINUXenforcing/SELINUXdis…

baichuan2(百川2)本地部署的实战方案

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…

Web开发后端总结

Web后端开发现在基本上都是基于标准的三层架构进行开发的&#xff0c;在三层架构当中&#xff0c;Controller控制器层 - 负责接收请求响应数据&#xff0c;Service - 业务层负责具体的业务逻辑处理&#xff0c;而Dao - 数据访问层也叫持久层&#xff0c;就是用来处理数据访问操…

认识异常【超详细】

文章目录 1. 异常的概念与体系结构1.1 异常的概念1.2 异常的体系结构1.3 异常的分类1. 编译时异常2. 运行时异常 2. 异常的处理2.1 防御式编程2.2 异常的抛出2.3 异常的捕获2.3.1 异常声明throws2.3.2 try-catch捕获并处理2.3.3 finally 2.4 异常的处理流程 3. 自定义异常类 1.…

win10 任务栏预览设置为列表效果

背景 在win10系统&#xff0c;当同一个应用&#xff08;如文件资源管理器&#xff0c;git bash&#xff0c;word等&#xff09;打开多个页面时&#xff0c;当个数少于17&#xff08;大约&#xff09;个时&#xff0c;其默认预览效果为平铺&#xff0c;在大于17个时&#xff0c…

Spring与Docker:如何容器化你的Spring应用

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

自己的碎碎念集合

自己的碎碎念集合 2023-09-07 c++叠加三目运算符闰年计算法2023-08-13 一个小题目 A+B problem一、问题及解答关碍总结2023-07-26 C的2至36进制转换函数一、itoa()函数的示例代码总结2023-07-19 平面坐标下判断三角形以及输出周长和面积一. 基本知识总结2023-06-25 达芬奇去除白…

Android 大图显示优化方案-加载Gif 自定义解码器

基于Glide做了图片显示的优化&#xff0c;尤其是加载Gif图的优化&#xff0c;原生Glide加载Gif图性能较低。在原生基础上做了自定义解码器的优化&#xff0c;提升Glide性能 Glide加载大图和Gif 尤其是列表存在gif时&#xff0c;会有明显卡顿&#xff0c;cpu和内存占用较高&…

【RabbitMQ】介绍及消息收发流程

介绍 RabbitMQ 是实现 AMQP&#xff08;高级消息队列协议&#xff09;的消息中间件的一种&#xff0c;最初起源于金融系统&#xff0c;用于在分布式系统中存储转发消息&#xff0c;在易用性、扩展性、高可用性等方面表现不俗。 RabbitMQ 主要是为了实现系统之间的双向解耦而实…

LeetCode 138. Copy List with Random Pointer【链表,DFS,迭代,哈希表】中等

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

CSS笔记(黑马程序员pink老师前端)圆角边框

圆角边框 border-radius:length; 效果显示 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Documen…

[杂谈]-2023年实现M2M的技术有哪些?

2023年实现M2M的技术有哪些&#xff1f; 文章目录 2023年实现M2M的技术有哪些&#xff1f;1、寻找连接2、M2M与IoT3、流行的 M2M 协议 在当今的数字世界中&#xff0c;机器对机器 (M2M) 正在迅速成为标准。 M2M 包括使联网设备能够交换数据或信息的任何技术。 它可以是有线或无…

springboot整合elasticsearch使用案例

引入依赖 <dependency><groupId>org.elasticsearch.client</groupId><artifactId>elasticsearch-rest-high-level-client</artifactId> </dependency> 添加注入 import org.apache.http.HttpHost; import org.elasticsearch.client.Res…

项目(智慧教室)第四部分,页面交互功能,WebServer建立与使用,

一。页面构思 1.标题栏 大标题&#xff1a;智慧教室管理系统 小标题&#xff1a;灯光&#xff0c;报警&#xff0c;风扇&#xff0c;温度&#xff0c;湿度&#xff0c;光照 2.样式设计 背景设置。字体设置&#xff08;字体大小&#xff0c;格式&#xff0c;颜色&#xff09; 3.…

【人月神话】深入了解软件工程和项目管理

文章目录 &#x1f468;‍⚖️《人月神话》的主要观点&#x1f468;‍&#x1f3eb;《人月神话》的主要内容&#x1f468;‍&#x1f4bb;作者介绍 &#x1f338;&#x1f338;&#x1f338;&#x1f337;&#x1f337;&#x1f337;&#x1f490;&#x1f490;&#x1f490;&a…