人工智能AI 全栈体系(一)

第一章 神经网络是如何实现的

这些年人工智能蓬勃发展,在语音识别、图像识别、自然语言处理等多个领域得到了很好的应用。推动这波人工智能浪潮的无疑是深度学习。所谓的深度学习实际上就是多层神经网络,至少到目前为止,深度学习基本上是用神经网络实现的。神经网络并不是什么新的概念,早在上个世纪40年代就开展了以感知机为代表的神经网络的研究,只是限于当时的客观条件,提出的模型比较简单,只有输入、输出两层,功能有限,连最简单的异或问题(XOR问题)都不能求解,神经网络的研究走向低潮。

到了80年代中期,随着BP算法的提出,神经网络再次引起研究热潮。当时被广泛使用的神经网络,在输入层和输出层之间引入了隐含层,不但能轻松求解异或问题,还被证明可以逼近任意连续函数。但限于计算能力和数据资源的不足,神经网络的研究再次陷入低潮。

一直对神经网络情有独钟的多伦多大学的辛顿教授,于2006年在《科学》上发表了一篇论文,提出了深度学习的概念,至此神经网络以深度学习的面貌再次出现在研究者的面前。但是深度学习并不是简单地重复以往的神经网络,而是针对以往神经网络研究中存在的问题,提出了一些解决方法,可以实现更深层次的神经网络,这也是深度学习一词的来源。

随着深度学习方法先后被应用到语音识别、图像识别中,并取得了传统方法不可比拟的性能,深度学习引起了人工智能研究的再次高潮。
请添加图片描述

一、数字识别

1. 引入例子

  • 下图是个数字3的图像,其中1代表有笔画的部分,0代表没有笔画的部分。假设想对0到9这十个数字图像进行识别,也就是说,如果任给一个数字图像,我们想让计算机识别出这个图像是数字几,我们应该如何做呢?
    请添加图片描述

2. 模式匹配

  • 一种简单的办法就是对每个数字构造一个模式,比如对数字3,我们这样构造模式:有笔画的部分用1表示,而没有笔画的部分,用-1表示,如图所示。当有一个待识别图像时,我们用待识别图像与该模式进行匹配,匹配的方法就是用图像和模式的对应位置数字相乘,然后再对相乘结果进行累加,累加的结果称为匹配值。为了方便表示,我们将模式一行一行展开用 w i w_i wi( i i i = 1, 2, …, n) 表示模式的每一个点。待识别图像也同样处理,用 x i x_i xi( i i i = 1, 2, …, n) 表示。这里假定模式和待识别图像的大小是一样的,由n个点组成。
    请添加图片描述
  • 如果模式与待识别图像中的笔画是一样的,就会得到一个比较大的匹配结果,如果有不一致的地方,比如模式中某个位置没有笔画,这部分在模式中为-1,而待识别图像中相应位置有笔画,这部分在待识别图像中为1,这样对应位置相乘就是-1,相当于对结果做了惩罚,会使得匹配结果变小。匹配结果越大说明待识别图像与模式越一致,否则差别就比较大。
  • 如图所示是8的图像。这两个数字的区别只是在最左边是否有笔画,当用8与3的模式匹配时,8的左边部分与3的模式的左边部分相乘时,会得到负值,这样匹配结果受到了惩罚,降低了匹配值。相反如果当3与8的模式匹配时,由于3的左边没有笔画值为0,与8的左边对应位置相乘得到的结果是0,也同样受到了惩罚,降低了匹配值。只有当待识别图像与模式笔画一致时,才会得到最大的匹配值。
  • 数字3、8分别与3的模式的匹配值各是多少?计算结果,3与3的模式的匹配值是143,而8与3的模式的匹配值是115。可见前者远大于后者。
    请添加图片描述

3. 存在的问题

  • 如果想识别一个数字是3还是8,就分别和这两个数字的模式进行匹配,看与哪个模式的匹配值大,就是哪个数字。
  • 如果识别0到9这10个数字,只要分别建造这10个数字的模式就可以了。对于一个待识别图像,分别与10个模式匹配,选取匹配值最大的作为识别结果就可以了。但是由于不同数字的笔画有多有少,比如1笔画就少,而8就比较多,所以识别结果的匹配值也会有大有小。

4. 使用 Sigmoid 函数

  • 我们可以对匹配值用一个称作sigmoid的函数进行变换,将匹配值变换到0和1之间。sigmoid函数如下式所示,通常用σ表示。

σ = 1 1 + e − x \sigma = \frac{1}{1 + e ^ {-x} } σ=1+ex1
请添加图片描述

  • 从图中可以看出,当x比较大时,sigmoid输出接近于1,而x比较小时(负数),sigmoid输出接近于0。经过sigmoid函数变换后的结果可以认作是待识别图像属于该数字的概率。

5. 增加偏置项

  • 但是像前面的3和8的匹配结果分别为143、115,把两个结果带入到sigmoid函数中,都接近于1了,并没有明显的区分。
  • sigmoid函数并不能直接这样用,而是要“平移”一下,加上一个适当的偏置b,使得加上偏置后,两个结果分别在sigmoid函数中心线的两边,来解决这个问题:
    请添加图片描述
    请添加图片描述
  • 比如这里我们让b=-129,这样处理后的sigmoid值分别是:
    • sigmoid(143-129)=0.999999
    • sigmoid(115-129)=0.000001
  • 这样区分的就非常清楚了,接近1的就是识别结果,而接近0的就不是。不同的数字模式具有不同的b值,这样才能解决前面提到的不同数字之间笔画有多有少的问题。
  • 这是一种简单的数字识别基本原理。这与神经网络有什么关系呢?
    请添加图片描述

6. 神经网络

  • 上面介绍的,其实就是一个简单的神经网络。这是一个可以识别3和8的神经网络,和前面介绍的一样, x 1 x_1 x1 x n x_n xn 表示待识别图像, w 3.1 w_{3.1} w3.1 w 3. n w_{3.n} w3.n w 8.1 w_{8.1} w8.1 w 8. n w_{8.n} w8.n 分别表示3的模式和8的模式,在图中可以看成是每条边的权重。如果用 y 3 y_3 y3 y 8 y_8 y8 分别表示识别为3或者8的概率的话,则这个示意图实际表示的和前面介绍的数字识别方法是完全一样的,只不过是换成了用网络的形式表达。
    请添加图片描述
  • 图中下边表示输入层,每个圆圈对应输入图像在位置 i i i 的值 x i x_i xi ,上边一层表示输出层,每一个圆圈代表了一个神经元,所有的神经元都采取同样的运算:输入的加权和,加上偏置,再经过sigmoid函数得到输出值。这样的一个神经网络,实际表示的是如下计算过程:
    请添加图片描述

7. 数字识别神经网络

  • 每个神经元对应的权重都代表了一种模式。比如在这个图中,一个神经元代表的是数字3的模式,另一个神经元代表的是数字8的模式。进一步如果在输出层补足了10个数字,就可以实现数字识别了。
    请添加图片描述
  • 要识别的数字不规整,怎么办?
  • 这个网络过于简单了,要想构造复杂一些的网络,可以有两个途径。比如一个数字可以有不同的写法,这样的话,同一个数字就可以构造多个不同的模式,只要匹配上一个模式,就可以认为是这个数字。这是一种横向的扩展。另外一个途径就是构造局部的模式。比如可以将一个数字划分为上下左右4个部分,每个部分是一个模式,多个模式组合在一起合成一个数字。不同的数字,也可以共享相同的局部模式。比如3和8在右上、右下部分模式可以是相同的,而区别在左上和左下的模式上。要实现这样的功能,需要在神经网络的输入层、输出层之间增加一层表示局部模式的神经元,这层神经元由于在神经网络的中间部分,所以被称为隐含层。输入层到隐含层的神经元之间都有带权重的连接,而隐含层到输出层之间也同样具有带权重的连接。隐含层的每个神经元,均表示了某种局部模式。这是一种纵向的扩展。

8. 神经网络的横向扩展 – 增加模式

请添加图片描述

9. 神经网络的纵向扩展 – 局部模式

请添加图片描述

10. 让神经网络更深 - 模式组合

请添加图片描述

11. 多层神经网络

  • 如果要刻画更细致的局部模式,可以通过增加隐含层的数量来刻画更细致的模式,每增加一层隐含层,模式就被刻画的更详细一些。这样就建立了一个深层的神经网络,越靠近输入层的神经元,刻画的模式越细致,体现的越是细微信息的特征;越是靠近输出层的神经元,刻画的模式越是体现了整体信息的特征。这样通过不同层次的神经元体现的是不同粒度的特征。每一层隐含层也可以横向扩展,在同一层中每增加一个神经元,就增加了一种与同层神经元相同粒度特征的模式。
    请添加图片描述
  • 神经网络越深越能刻画不同粒度特征的模式,而横向神经元越多,则越能表示不同的模式。但是当神经网络变得复杂后,所要表达的模式会非常多,如何构造各种不同粒度的模式呢?
  • 构造模式是非常难的事情,事实上我们也很难手工构造这些模式。在后面我们可以看到,这些模式,也就是神经网络的权重是可以通过样本训练得到的,也就是根据标注好的样本,神经网络会自动学习这些权值,也就是模式,从而实现数字识别。

12. 如何获得模式?

  • 模式通过神经元的连接权重表示
  • 通过训练样本,自动学习权重,也就是模式
  • 不是人工设计!
  • 学习到的模式是一种隐含表达,并不像举例的这样清晰

13. 总结

  • 神经元可以表示某种模式,不同层次的神经元可以表示不同粒度的特征,从输入层开始,越往上表示的特征粒度越大,从开始的细粒度特征,到中间层次的中粒度特征,再到最上层的全局特征,利用这些特征就可以实现对数字的识别。如果网络足够复杂,神经网络不仅可以实现数字识别,还可以实现更多的智能系统,比如人脸识别、图像识别、语音识别、机器翻译等。
  • 神经元实际上是模式的表达,不同的权重体现了不同的模式。权重与输入的加权和,即权重与对应的输入相乘再求和,实现的是一次输入与模式的匹配。该匹配结果可以通过sigmoid函数转换为匹配上的概率。概率值越大说明匹配度越高。
  • 一个神经网络可以由多层神经元构成,每个神经元表达了一种模式,越是靠近输入层的神经元表达的越是细粒度的特征,越是靠近输出层的神经元表达的越是粗粒度特征。同一层神经元越多,说明表达的相同粒度的模式越多,而神经网络层数越多,越能刻画不同粒度的特征。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/129541.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为云云耀云服务器L实例评测|有关华为云云耀云服务器L实例你可能不知道的事情

前言 最近华为云推出了华为云云耀云服务器L实例。主打一个轻量级云服务器,即开即用,轻松运维,开启简单上云第一步。具有智能不卡顿,价优随心用,上手更简单,管理特省心。 在推出的第一时间我就买了一台来耍…

C高级day4

一、实现一个对数组求和的函数,数组通过实参传递给函数 二、写一个函数,输出当前用户的uid和gid,并使用变量接收结果 三、XMind思维导图

23062C++QTday4

仿照string类&#xff0c;完成myString 类 代码&#xff1a; #include <iostream> #include <cstring> using namespace std; class myString {private:char *str; //记录c风格的字符串int size; //记录字符串的实际长度public://无参构造my…

【MySQL系列】视图特性

「前言」文章内容大致是MySQL事务管理。 「归属专栏」MySQL 「主页链接」个人主页 「笔者」枫叶先生(fy) 目录 视图1.1 视图概念1.2 创建视图1.3 修改互相影响1.4 删除视图1.5 视图规则和限制 视图 1.1 视图概念 视图是一个虚拟表&#xff0c;其内容由查询定义同真实的表一样…

零基础教程:使用yolov8训练无人机VisDrone数据集

1.准备数据集 1.先给出VisDrone2019数据集的下载地址&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1e2Q0NgNT-H-Acb2H0Cx8sg 提取码&#xff1a;31dl 2.将数据集VisDrone放在datasets目录下面 2.数据集转换程序 1.在根目录下面新建一个.py文件&#xff0c;取名叫…

【strcat函数和strncat函数的对比与模拟实现】

strcat函数和strncat函数的对比与模拟实现 1.strcat函数的介绍 资源来源于cplusplus网站 它的作用是&#xff1a; 将源字符串的副本追加到目标字符串。目标中的结束空字符被源的第一个字符覆盖&#xff0c;并且在由目标中的两个字符串串联形成的新字符串的末尾包含一个空字符…

序列到序列学习(seq2seq)

permute(1,0,2)&#xff0c;将batch_size 放在中间state 最后一个时刻&#xff0c;每个层的输出

一文看懂Java的类加载机制

前言 当我们运行Java程序时&#xff0c;Java虚拟机&#xff08;JVM&#xff09;需要加载各种类文件&#xff0c;以执行程序中的代码。Java的类加载机制是Java语言的一个关键特性&#xff0c;它负责在运行时将类加载到内存中&#xff0c;并确保类的正确性。 类是在运行期间第一…

网络安全—0基础入门学习手册

前言 一、什么是网络安全 网络安全可以基于攻击和防御视角来分类&#xff0c;我们经常听到的 “红队”、“渗透测试” 等就是研究攻击技术&#xff0c;而“蓝队”、“安全运营”、“安全运维”则研究防御技术。 无论网络、Web、移动、桌面、云等哪个领域&#xff0c;都有攻与防…

用python实现基本数据结构【01/4】

说明 如果需要用到这些知识却没有掌握&#xff0c;则会让人感到沮丧&#xff0c;也可能导致面试被拒。无论是花几天时间“突击”&#xff0c;还是利用零碎的时间持续学习&#xff0c;在数据结构上下点功夫都是值得的。那么Python 中有哪些数据结构呢&#xff1f;列表、字典、集…

Kubernetes (K8s) 解读:微服务与容器编排的未来

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

设计模式篇(Java):装饰者模式

&#x1f468;‍&#x1f4bb;本文专栏&#xff1a;设计模式篇-装饰者模式 &#x1f468;‍&#x1f4bb;本文简述&#xff1a;装饰者模式的详解以及jdk中的应用 &#x1f468;‍&#x1f4bb;上一篇文章&#xff1a; 设计模式篇(Java)&#xff1a;桥接模式 &#x1f468;‍&am…

串行数据发送器

框图 THR&#xff1a;发送保持寄存器 定义了两种状态&#xff1a;空&#xff0c;满数据写入端口地址&#xff1a;00H状态读出端口地址&#xff1a;00H当THR不满时&#xff0c;可以向THR写入数据 TSR&#xff1a;发送移位寄存器 一旦TSR空而THR中有数据时&#xff0c;THR中的数…

shell中分支语句,循环语句,函数

实现对一个数组求和的函数&#xff0c;将数组作为实参传给函数 #!/bin/bash sum() {for i in $do((sumi))doneecho $sum} read -p "请输入一组数字: " -a arr sum ${arr[*]}2 调用函数&#xff0c;输出当前用户的uid gid 并使用变量接收结果 #!/bin/bashget() {uid…

2023 年高教社杯全国大学生数学建模竞赛题目 B 题 多波束测线问题

B 题 多波束测线问题 单波束测深是利用声波在水中的传播特性来测量水体深度的技术。声波在均匀介质中作匀速直线传播&#xff0c;在不同界面上产生反射&#xff0c;利用这一原理&#xff0c;从测量船换能器垂直向海底发射声波信号&#xff0c;并记录从声波发射到信号接收的传播…

VSCode自动分析代码的插件

今天来给大伙介绍一款非常好用的插件&#xff0c;它能够自动分析代码&#xff0c;并帮你完成代码的编写 效果如下图 首先我们用的是VSCode&#xff0c;&#xff08;免费随便下&#xff09; 找到扩展&#xff0c;搜索CodeGeeX&#xff0c;将它下载好&#xff0c;就可以实现了 到…

由Qt::BlockingQueuedConnection引起的关闭Qt主页面而后台仍有进程残留

BUG&#xff1a;由Qt::BlockingQueuedConnection引起的关闭Qt主页面而后台仍有进程残留 1、错误代码示例 首先我们看下下面的代码&#xff0c;可以思考一下代码的错误之处 /** BlockingQueueDeadLock.h **/ #pragma once#include <QtWidgets/QMainWindow> #include &q…

深度学习Tensorflow: CUDA_ERROR_OUT_OF_MEMORY解决办法

目前在用深度学习训练&#xff0c;训练中设置batch size后可以正常跑通&#xff0c;但是在训练一轮save_model时&#xff0c;总出现这个错误&#xff0c;即使我调batch size到1也依旧会报错。 发现是在 调用logger时出现问题。 查询后了解到是因为TensorFlow中的eager_executi…

模电课程设计

主要内容跟本科实验关系很大&#xff0c;可以用来借鉴。 包含文件有&#xff1a;实验报告、Multisim仿真文件&#xff0c;资料很全&#xff0c;有问题可以私信 目录 1、模电课设&#xff1a;用Multisim简单了解二极管 2、模电课设&#xff1a;用Multisim简析三极管与场效应…