Page Assist - 本地Deepseek模型 Web UI 的安装和使用

Page Assist

Page Assist是一个开源的Chrome扩展程序,为本地AI模型提供一个直观的交互界面。通过它可以在任何网页上打开侧边栏或Web UI,与自己的AI模型进行对话,获取智能辅助。这种设计不仅方便了用户随时调用AI的能力,还保护了用户的隐私,因为所有的交互都是在本地完成的。
下载见本文绑定的资源,链接:https://blog.csdn.net/m0_56734068/article/details/143179789

扩展过程

1.下载后进“管理扩展程序菜单”,点击打包扩展程序。

2.选择你解压“pageassist-1.4.4-chrome.zip”存放的位置。

3.完成后,点“详情”得到如下说明。

4. 此页面往下翻,检查“固定到工具栏”是否为打开状态。打开后chrome浏览器地址栏后出现一个对话按钮。


使用过程

点对话框按钮,即打开deepseek网页用户界面web-ui,前提是你已部署好大模型了。

测试一

随便给个数学题目:1+2+3+...+100 

3.点击答案下方的第二个按钮“复制到剪切板” Copy to clipboard,就得到答案的markdown标记语言。如以上答案贴在代码框里,如下:

<think>
I will use the formula for the sum of the first n natural numbers, which is \( \frac{n(n + 1)}{2} \).Since there are 100 terms in this sequence, I substitute \( n = 100 \) into the formula.Calculating this gives me \( \frac{100 \times 101}{2} = 5050 \).
</think>To find the sum of the first 100 natural numbers (1 + 2 + 3 + ... + 100), we can use the formula for the sum of an arithmetic series:\[
S_n = \frac{n(n + 1)}{2}
\]Where:
- \( S_n \) is the sum of the first \( n \) natural numbers.
- \( n \) is the number of terms.**Step-by-Step Solution:**1. **Identify the Number of Terms (\( n \))**:  In this case, we are summing the first 100 natural numbers.\[n = 100\]2. **Plug the Value into the Formula**:  \[S_{100} = \frac{100 \times (100 + 1)}{2}\]3. **Simplify the Expression**:  \[S_{100} = \frac{100 \times 101}{2} = 50 \times 101 = 5050\]4. **Final Answer**:  \[1 + 2 + 3 + \dots + 100 = \boxed{5050}\]

而直接贴在发文的编辑框里,发表后就和web-ui里的显示一样了,包括用普通字符难以表达的数学公式也用LaTex公式展示出数学中正确的表达。 


<think>
I will use the formula for the sum of the first n natural numbers, which is \( \frac{n(n + 1)}{2} \).

Since there are 100 terms in this sequence, I substitute \( n = 100 \) into the formula.

Calculating this gives me \( \frac{100 \times 101}{2} = 5050 \).
</think>

To find the sum of the first 100 natural numbers (1 + 2 + 3 + ... + 100), we can use the formula for the sum of an arithmetic series:

\[
S_n = \frac{n(n + 1)}{2}
\]

Where:
- \( S_n \) is the sum of the first \( n \) natural numbers.
- \( n \) is the number of terms.

**Step-by-Step Solution:**

1. **Identify the Number of Terms (\( n \))**:  
   In this case, we are summing the first 100 natural numbers.
   
   \[
   n = 100
   \]

2. **Plug the Value into the Formula**:  
   
   \[
   S_{100} = \frac{100 \times (100 + 1)}{2}
   \]
   
3. **Simplify the Expression**:  
   
   \[
   S_{100} = \frac{100 \times 101}{2} = 50 \times 101 = 5050
   \]

4. **Final Answer**:  
   
   \[
   1 + 2 + 3 + \dots + 100 = \boxed{5050}
   \]


测试二

y''+2y'+3y=0 请解这个微分方程,并写出答题过程。

DS大约化了3分钟时间解决问题。用14b和8b两种模型回答,最终结果一致的,思考过程写题经过有点不一样。

14b: (如下所示,回答的<think>部分写在代码框里)


<think>
好,我现在要解这个二阶常系数线性微分方程:y'' + 2y' + 3y = 0。嗯,让我慢慢想一想。首先,这个方程看起来是齐次的,也就是说,它没有非齐次项,所以应该可以用特征方程法来解。那什么是特征方程呢?对,应该是把y''替换成r²,把y'替换成r,然后把方程中的y''、y'和y都变为相应的多项式,这样就得到一个关于r的二次方程。所以,我来代入一下。原来的微分方程是y'' + 2y' + 3y = 0,特征方程就是把y''替换成r²,y'替换成r,y替换成1,所以得到:
r² + 2r + 3 = 0。接下来,我需要解这个二次方程。用求根公式:r = [-b ± √(b² - 4ac)] / (2a),这里a=1,b=2,c=3。那代入进去就是:
r = [-2 ± √(4 - 12)] / 2 = [-2 ± √(-8)] / 2。哎呀,这里有个问题,√(-8)等于多少呢?应该是虚数单位i乘以√8,所以继续计算:
√(-8) = i√8,而√8可以化简为2√2,所以r的两个解就是:
r = [-2 ± 2i√2] / 2。接下来,我要把这个分母2约掉,得到:
r = -1 ± i√2。所以,这个微分方程有复数根,形式是α + βi,其中α = -1,β = √2。因为这些根都是复数,所以解的结构应该涉及到指数函数和三角函数。我记得对于这样的根,通解是:
y(t) = e^(α t) [C1 cos(β t) + C2 sin(β t)],
其中C1和C2是常数,由初始条件决定。不过,我觉得这不够全面,因为有时候可能还会有实数的指数部分,不过这里根已经是复数了,所以应该直接用这个形式。对吧?那我再检查一下,特征方程是否正确:r² + 2r +3 =0,没错。解出来的r确实是-1 ± i√2,这样写出通解也是正确的。不过,我还记得有时候复数根也可以用欧拉公式来表达,但可能这里直接使用指数和正弦、余弦函数更方便一些。嗯,总结一下,微分方程y'' + 2y' +3y=0的解是:
y(t) = e^(-t)[C1 cos(√2 t) + C2 sin(√2 t)],
其中C1和C2是任意常数。不过,为了确保没错,我再检查一下是否有计算错误的地方。首先,特征方程r² + 2r +3=0的判别式D = b² -4ac=4-12=-8,是正确的,所以根是复数。然后代入解的时候也没有问题,得到了r=-1 ± i√2,所以没错。另外,如果我把这个解带回原微分方程,看看是否满足:
首先计算y = e^(-t)[C1 cos(√2 t) + C2 sin(√2 t)],
那么y' = -e^(-t)[C1 cos(√2 t) + C2 sin(√2 t)] + e^(-t)[-C1 √2 sin(√2 t) + C2 √2 cos(√2 t)],
而y''则是[e^(-t)][C1 cos(√2 t) + C2 sin(√2 t)] - 2e^(-t)[C1 cos(√2 t) + C2 sin(√2 t)] + e^(-t)[-C1 (√2)^2 sin(√2 t) - C2 (√2)^2 cos(√2 t)]。嗯,这可能有点繁琐,不过我可以简化一下计算:让我更仔细地算一遍导数:
y = e^{-t} (C1 cos(√2 t) + C2 sin(√2 t)),
那么y' = -e^{-t}(C1 cos(√2 t)+C2 sin(√2 t)) + e^{-t}(-C1 √2 sin(√2 t) + C2 √2 cos(√2 t))。
这是因为,导数的计算是:-e^{-t}乘以括号里的部分,加上e^{-t}乘以对cos和sin求导后的项。然后y''就是:
首先,对y'求导,
= [-e^{-t}(C1 cos + C2 sin) + e^{-t}(-C1 √2 sin + C2 √2 cos)]的导数,
那这部分等于:
-e^{-t}(C1 cos + C2 sin) + [ -e^{-t}(C1 cos + C2 sin) ) 的导数,记得用乘积法则?
不对,其实应该是这样:
y' = (-C1 cos(√2 t) - C2 sin(√2 t)) e^{-t} + (-C1 √2 sin(√2 t) + C2 √2 cos(√2 t)) e^{-t},
所以y''就是把这两项再次导数:
首先,第一部分是(-C1 cos + -C2 sin)e^{-t},
它的导数是:
[C1 √2 sin(√2 t) - C2 √2 cos(√2 t)] e^{-t} +
+ (-C1 cos + -C2 sin)e^{-t},
然后第二项是(-C1 √2 sin + C2 √2 cos)e^{-t},
它的导数是:
[ -C1 (√2)^2 cos - C2 (√2)^2 sin ] e^{-t}
+ (-C1 √2 sin + C2 √2 cos) e^{-t}。这样计算可能比较复杂,换种方式,我是否可以用更系统的方法来代入原方程呢?另一种方法是,用特征方程法求出通解之后,再验证一下代入是否正确,不过其实已经得到了标准形式,所以或许不需要详细验证了。或者,假设我有通解y = e^{-t}(C1 cos(√2 t) + C2 sin(√2 t)),
然后带回原方程:y'' + 2y' +3y=0,计算各个导数:
先算y = e^{-t} (C1 cos + C2 sin),
那么y’ = -e^{-t}(C1 cos + C2 sin) + e^{-t}(-C1 √2 sin + C2 √2 cos),
接下来,y’’ 就是对y’求导:
= [e^{-t}(C1 cos + C2 sin)] - 2(e^{-t})(C1 cos + C2 sin)
+ e^{-t}[ (-C1 (√2)^2 sin - C2 (√2)^2 cos) ]
等一下,这可能太繁琐了,换个思路:或者,可以利用微分方程的线性性质,将解带入原方程,看看是否等于0。不过这可能花费比较多时间,我觉得或许可以接受这个通解,因为它来自正确的特征方程,并且步骤是对的,所以应该没问题。综上所述,这个微分方程y'' + 2y' +3y=0的解是:
y(t) = e^{-t}[C1 cos(√2 t) + C2 sin(√2 t)],
其中C1和C2由初始条件给出。所以,我觉得这个过程没问题,得到的通解也是正确的。**答案**
微分方程 \( y'' + 2y' + 3y = 0 \) 的解为:
\[
y(t) = e^{-t} \left[ C_1 \cos(\sqrt{2} t) + C_2 \sin(\sqrt{2} t) \right]
\]
其中 \( C_1 \) 和 \( C_2 \) 是常数。所以,最终答案是:
\[
\boxed{y(t) = e^{-t} \left( C_1 \cos(\sqrt{2} t) + C_2 \sin(\sqrt{2} t) \right)}
\]
</think>

首先,我们考虑解二阶常系数线性微分方程 \( y'' + 2y' + 3y = 0 \)。

1. **特征方程法**:
   将 \( y'' \)、\( y' \) 和 \( y \) 分别替换为 \( r^2 \)、\( r \) 和 1,得到特征方程:
   \[
   r^2 + 2r + 3 = 0
   \]

2. **求解特征方程**:
   使用二次公式解得:
   \[
   r = \frac{-2 \pm \sqrt{4 - 12}}{2} = \frac{-2 \pm \sqrt{-8}}{2} = -1 \pm i\sqrt{2}
   \]

3. **通解形式**:
   特征根为复数 \( -1 + i\sqrt{2} \) 和 \( -1 - i\sqrt{2} \),因此解的形式为:
   \[
   y(t) = e^{-t} \left[ C_1 \cos(\sqrt{2} t) + C_2 \sin(\sqrt{2} t) \right]
   \]
   其中 \( C_1 \) 和 \( C_2 \) 是常数。

最终答案为:
\[
\boxed{y(t) = e^{-t} \left( C_1 \cos(\sqrt{2} t) + C_2 \sin(\sqrt{2} t) \right)}
\]


8b:


<think>
嗯,我现在得解这个微分方程:y'' + 2y' + 3y = 0。好吧,先想想这是什么类型的方程。首先,这是一个二阶线性常系数齐次微分方程。一般来说,这样的方程可以用特征方程的方法来解。那我就按照步骤一步步来。第一步,写出特征方程。原方程的特征方程应该是:r² + 2r + 3 = 0。对吧?因为二阶的话,y''对应的是r²,系数不变;y'对应的是一次项,所以是2r,而常数项就是原来的常数,这里是3。接下来,解这个二次方程。用求根公式:r = [-b ± √(b² - 4ac)] / (2a),这里a=1,b=2,c=3。代入进去的话:r = [-2 ± √(4 - 12)] / 2
√里面是4-12=-8,所以平方根变成虚数了,记作i√8,也就是2√2 i。那这样,解就是:r = (-2 ± 2√2 i)/2。约分一下,分子分母都除以2,得 r = -1 ± √2 i。这说明特征方程的根是复数,形式为α ± βi,其中α=-1,β=√2。根据微分方程的解法,这种情况下通解的形式应该是:y(x) = e^{α x} [C1 cos(βx) + C2 sin(βx)],对吧?所以代入进去的话,就是:y(x) = e^{-x} [C1 cos(√2 x) + C2 sin(√2 x)]嗯,这里我得确认一下步骤是否正确。特征方程的根是正确的吗?我们再算一遍:r² + 2r +3=0,
判别式 D = (2)^2 -4*1*3 = 4 -12 = -8,
所以√D = √(-8) = 2i√2,
所以r=(-2 ± 2i√2)/2=-1±i√2,
对的,没有问题。那通解的形式是否正确?对于复根α ± βi,确实对应的解是e^{α x} (C1 cos(βx)+ C2 sin(βx))。没问题。有没有可能犯了什么错误呢?比如求特征方程的时候是不是哪里符号弄反了?让我再检查一下:原微分方程是y'' + 2y' +3y=0,对应的是r² +2r+3=0,没错。那根的计算也没问题。判别式算对了,√里面的结果也正确,得出的结果没问题。所以,我觉得通解应该是正确的:y(x)=e^{-x}[C1 cos(√2 x)+ C2 sin(√2 x)]或者也可以写成其他的形式,比如用欧拉公式表示为 e^{-x} [A e^{i√2 x} + B e^{-i√2 x}],但一般来说,更习惯于将解写成实数形式的余弦和正弦函数。综上所述,这个微分方程的通解就是上面那样。
</think>

为了求解二阶线性常系数齐次微分方程 \( y'' + 2y' + 3y = 0 \),我们首先写出其特征方程:

\[ r^2 + 2r + 3 = 0 \]

使用求根公式得到:

\[ r = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{-2 \pm \sqrt{-8}}{2} = -1 \pm i\sqrt{2} \]

由于特征方程的根是复数 \( -1 \pm i\sqrt{2} \),对应的通解形式为:

\[ y(x) = e^{-x} \left( C_1 \cos(\sqrt{2}x) + C_2 \sin(\sqrt{2}x) \right) \]

其中,\( C_1 \) 和 \( C_2 \) 是常数。

**答案:**

微分方程的通解为:

\[ y(x) = e^{-x} \left( C_1 \cos(\sqrt{2} x) + C_2 \sin(\sqrt{2} x) \right) \]


其它

DS占用内存情况 

大致情况:14b占用9G内存,8b占用5.8G,

DS与openAI的对比

如下图所示,deepseek的各项指标基本与openAI齐平各有出入,怪不到老美从跳脚要制裁到各大公司选择接入,打不过就加入吧。

华为小艺接入DS

最后附带一个新闻:在我编辑此文前一会会,收到手机通知消息,告知小艺已接入deepseek-R1,指纯血鸿蒙版的小艺App,5.0之前的老版本的是“智慧语音”暂时还没有。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/12999.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【优先算法】专题——位运算

在讲解位运算之前我们来总结一下常见的位运算 一、常见的位运算 1.基础为运算 << &&#xff1a;有0就是0 >> |&#xff1a;有1就是1 ~ ^&#xff1a;相同为0&#xff0c;相异位1 /无进位相加 2.给一个数 n&#xff0c;确定它的二进制表示…

Eureka加密 及Gateway搭建 - 基于SpringBoot不同版本配置方式

前言&#xff1a;在最近开发过程中 偶遇根据SpringBoot不同版本导致配置方式不一致等问题 通用&#xff1a;Eureka服务配置 Server端&#xff1a; 一、引入依赖 spring-boot-starter-security <dependencies><!-- Eureka 声明依赖 --><dependency><gro…

3-Not_only_base/2018网鼎杯

3-Not_only_base 打开code MCJIJSGKPZZYXZXRMUW3YZG3ZZG3HQHCUS 分析&#xff1a; 首先看题知道解密过程中肯定有base解密。 知识点1&#xff1a; Base64字符集&#xff1a; 包含大小写字母&#xff08;A-Z、a-z&#xff09;、数字&#xff08;0-9&#xff09;以及两个特殊字…

Polardb三节点集群部署安装--附虚拟机

1. 架构 PolarDB-X 采用 Shared-nothing 与存储计算分离架构进行设计&#xff0c;系统由4个核心组件组成。 计算节点&#xff08;CN, Compute Node&#xff09; 计算节点是系统的入口&#xff0c;采用无状态设计&#xff0c;包括 SQL 解析器、优化器、执行器等模块。负责数据…

Java基础面试题50题

1&#xff0c;""空字符串的作用 package com.neuedu.nineteen;public class Test {public static void main(String[] args) {String s"";for (char i a; i < d; i) {ssi;//输出abc // sis;//输出cba}System.out.println(s);} }如题所示&…

【现代深度学习技术】深度学习计算 | 延后初始化自定义层

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈PyTorch深度学习 ⌋ ⌋ ⌋ 深度学习 (DL, Deep Learning) 特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上&#xff0c;结合当代大数据和大算力的发展而发展出来的。深度学习最重…

Immutable设计 SimpleDateFormat DateTimeFormatter

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解不可变设计模式&#xff0c;时间format有线程安全要求的注意使用DateTimeFormatter 目录 ImmutableSimpleDateFormat 非线程安全可以synchronized解决&a…

Got socket exception during request. It might be caused by SSL misconfiguration

引入xutils3依赖&#xff0c;结果包找不到 maven里面添加阿里云镜像 核心 maven { url uri("https://maven.aliyun.com/nexus/content/groups/public/") }repositories {google()maven { url uri("https://maven.aliyun.com/nexus/content/groups/public/"…

RocketMQ实战—4.消息零丢失的方案

大纲 1.全链路分析为什么用户支付完成后却没有收到红包 2.RocketMQ的事务消息机制实现发送消息零丢失 3.RocketMQ事务消息机制的底层实现原理 4.是否可以通过同步重试方案来代替事务消息方案来实现发送消息零丢失 5.使用RocketMQ事务消息的代码案例细节 6.同步刷盘Raft协…

【Elasticsearch】date range聚合

好的&#xff0c;继续之前的示例&#xff1a; json ] } } } } 4.3 自定义键&#xff08;key&#xff09; 通过为每个范围指定一个唯一的键&#xff08;key&#xff09;&#xff0c;可以在结果中更方便地引用每个范围。这在使用keyed参数将结果以键值对形式返回时尤其有用。 j…

【R语言】获取数据

R语言自带2种数据存储格式&#xff1a;*.RData和*.rds。 这两者的区别是&#xff1a;前者既可以存储数据&#xff0c;也可以存储当前工作空间中的所有变量&#xff0c;属于非标准化存储&#xff1b;后者仅用于存储单个R对象&#xff0c;且存储时可以创建标准化档案&#xff0c…

[leetcode]双指针算法的使用

零.参考文章 双指针技术在数组和链表问题中的应用解析-CSDN博客 一.使用情况 双指针即是在有序数组的情况下&#xff0c;我们通过两个指针在遍历的过程中进行标记&#xff0c;对满足条件的进行处理&#xff0c;直至遍历完整个数组。 二.举个例子 2.1小人过河问题&#xff…

自指学习:AGI的元认知突破

文章目录 引言:从模式识别到认知革命一、自指学习的理论框架1.1 自指系统的数学定义1.2 认知架构的三重反射1.3 与传统元学习的本质区别二、元认知突破的技术路径2.1 自指神经网络架构2.2 认知效能评价体系2.3 知识表示的革命三、实现突破的关键挑战3.1 认知闭环的稳定性3.2 计…

C++ 入门速通-第5章【黑马】

内容来源于&#xff1a;黑马 集成开发环境&#xff1a;CLion 先前学习完了C第1章的内容&#xff1a; C 入门速通-第1章【黑马】-CSDN博客 C 入门速通-第2章【黑马】-CSDN博客 C 入门速通-第3章【黑马】-CSDN博客 C 入门速通-第4章【黑马】-CSDN博客 下面继续学习第5章&…

hot100(7)

61.31. 下一个排列 - 力扣&#xff08;LeetCode&#xff09; 数组问题&#xff0c;下一个更大的排列 题解&#xff1a;31. 下一个排列题解 - 力扣&#xff08;LeetCode&#xff09; &#xff08;1&#xff09;从后向前找到一个相邻的升序对&#xff08;i,j)&#xff0c;此时…

图像分类与目标检测算法

在计算机视觉领域&#xff0c;图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解&#xff0c;为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。 一、图像分类算法 图像分类是指将输入的图像划分为…

记录一次-Rancher通过UI-Create Custom- RKE2的BUG

一、下游集群 当你的下游集群使用Mysql外部数据库时&#xff0c;会报错&#xff1a; **他会检查ETCD。 但因为用的是Mysql外部数据库&#xff0c;这个就太奇怪了&#xff0c;而且这个检测不过&#xff0c;集群是咩办法被管理的。 二、如果不选择etcd,就选择控制面。 在rke2-…

SpringUI Web高端动态交互元件库

Axure Web高端动态交互元件库是一个专为Web设计与开发领域设计的高质量资源集合&#xff0c;旨在加速原型设计和开发流程。以下是关于这个元件库的详细介绍&#xff1a; 一、概述 Axure Web高端动态交互元件库是一个集成了多种预制、高质量交互组件的工具集合。这些组件经过精…

MySQL表的CURD

目录 一、Create 1.1单行数据全列插入 1.2多行数据指定列插入 1.3插入否则更新 1.4替换 2.Retrieve 2.1 select列 2.1.1全列查询 2.1.2指定列查询 2.1.3查询字段为表达式 2.1.4为查询结果指定别名 2.1.5结果去重 2.2where条件 2.3结果排序 2.4筛选分页结果 三…

文字加持:让 OpenCV 轻松在图像中插上文字

前言 在很多图像处理任务中,我们不仅需要提取图像信息,还希望在图像上加上一些文字,或是标注,或是动态展示。正如在一幅画上添加一个标语,或者在一个视频上加上动态字幕,cv2.putText 就是这个“文字魔术师”,它能让我们的图像从“沉默寡言”变得生动有趣。 今天,我们…