TCP的滑动窗口与拥塞控制

客户端每发送的一个包,服务器端都应该有个回复,如果服务器端超过一定的时间没有回复,客户端就会重新发送这个包,直到有回复。

为了保证顺序性,每一个包都有一个 ID。在建立连接的时候,会商定起始的 ID 是什么,然后按照 ID 一个个发送。为了保证不丢包,对于发送的包都要进行应答,但是这个应答也不是一个一个来的,而是会应答某个之前的 ID,表示都收到了,这种模式称为累计确认或者累计应答(cumulative acknowledgment)。

为了记录所有发送的包和接收的包,TCP 也需要发送端和接收端分别都有缓存来保存这些记录。发送端的缓存里是按照包的 ID 一个个排列,根据处理的情况分成四个部分。

1、发送了并且已经确认的。这部分就是你交代下属的,并且也做完了的,应该划掉的。

2、发送了并且尚未确认的。这部分是你交代下属的,但是还没做完的,需要等待做完的回复之后,才能划掉。

3、没有发送,但是已经等待发送的。这部分是你还没有交代给下属,但是马上就要交代的。

4、没有发送,并且暂时还不会发送的。这部分是你还没有交代给下属,而且暂时还不会交代给下属的。

在 TCP 里,接收端会给发送端报一个窗口的大小,叫 Advertised window。这个窗口的大小应该等于上面的第二部分加上第三部分,就是已经交代了没做完的加上马上要交代的。超过这个窗口的,接收端做不过来,就不能发送了。

对于接收端来讲,它的缓存里记录的内容要简单一些。

1、接受并且确认过的。也就是我领导交代给我,并且我做完的。

2、还没接收,但是马上就能接收的。也即是我自己的能够接受的最大工作量。

3、还没接收,也没法接收的。也即超过工作量的部分,实在做不完。

AdvertisedWindow=MaxRcvBuffer-((NextByteExpected-1)-LastByteRead)。

一种方法就是超时重试,也即对每一个发送了,但是没有 ACK 的包,都有设一个定时器,超过了一定的时间,就重新尝试。但是这个超时的时间如何评估呢?这个时间不宜过短,时间必须大于往返时间 RTT,否则会引起不必要的重传。也不宜过长,这样超时时间变长,访问就变慢了。

估计往返时间,需要 TCP 通过采样 RTT 的时间,然后进行加权平均,算出一个值,而且这个值还是要不断变化的,因为网络状况不断地变化。除了采样 RTT,还要采样 RTT 的波动范围,计算出一个估计的超时时间。由于重传时间是不断变化的,我们称为自适应重传算法(Adaptive Retransmission Algorithm)。

TCP 的策略是超时间隔加倍。每当遇到一次超时重传的时候,都会将下一次超时时间间隔设为先前值的两倍。两次超时,就说明网络环境差,不宜频繁反复发送。

有一个可以快速重传的机制,当接收方收到一个序号大于下一个所期望的报文段时,就会检测到数据流中的一个间隔,于是它就会发送冗余的 ACK,仍然 ACK 的是期望接收的报文段。而当客户端收到三个冗余的 ACK 后,就会在定时器过期之前,重传丢失的报文段。

LastByteSent - LastByteAcked <= min {cwnd, rwnd} ,是拥塞窗口和滑动窗口共同控制发送的速度。

对于到网络上,通道的容量 = 带宽 × 往返延迟。

一条 TCP 连接开始,cwnd 设置为一个报文段,一次只能发送一个;当收到这一个确认的时候,cwnd 加一,于是一次能够发送两个;当这两个的确认到来的时候,每个确认 cwnd 加一,两个确认 cwnd 加二,于是一次能够发送四个;当这四个的确认到来的时候,每个确认 cwnd 加一,四个确认 cwnd 加四,于是一次能够发送八个。可以看出这是指数性的增长。

涨到什么时候是个头呢?有一个值 ssthresh 为 65535 个字节,当超过这个值的时候,就要小心一点了,不能倒这么快了,可能快满了,再慢下来。

每收到一个确认后,cwnd 增加 1/cwnd,我们接着上面的过程来,一次发送八个,当八个确认到来的时候,每个确认增加 1/8,八个确认一共 cwnd 增加 1,于是一次能够发送九个,变成了线性增长。

拥塞的一种表现形式是丢包,需要超时重传,这个时候,将 sshresh 设为 cwnd/2,将 cwnd 设为 1,重新开始慢启动。这真是一旦超时重传,马上回到解放前。但是这种方式太激进了,将一个高速的传输速度一下子停了下来,会造成网络卡顿。

快速重传算法。当接收端发现丢了一个中间包的时候,发送三次前一个包的 ACK,于是发送端就会快速地重传,不必等待超时再重传。TCP 认为这种情况不严重,因为大部分没丢,只丢了一小部分,cwnd 减半为 cwnd/2,然后 sshthresh = cwnd,当三个包返回的时候,cwnd = sshthresh + 3,也就是没有一夜回到解放前,而是还在比较高的值,呈线性增长。

TCP 的拥塞控制主要来避免的两个现象都是有问题的。

第一个问题是丢包并不代表着通道满了,也可能是管子本来就漏水。例如公网上带宽不满也会丢包,这个时候就认为拥塞了,退缩了,其实是不对的。

第二个问题是 TCP 的拥塞控制要等到将中间设备都填充满了,才发生丢包,从而降低速度,这时候已经晚了。其实 TCP 只要填满管道就可以了,不应该接着填,直到连缓存也填满。

 TCP BBR 拥塞算法。它企图找到一个平衡点,就是通过不断地加快发送速度,将管道填满,但是不要填满中间设备的缓存,因为这样时延会增加,在这个平衡点可以很好的达到高带宽和低时延的平衡。

此文章为9月Day12学习笔记,内容来源于极客时间《趣谈网络协议》,推荐该课程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/130675.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D虚拟数字人定制,推动传统文化传播新高度

“数字人”成为“汉语盘点2022”年度十大新词语。伴随着科技发展成长的年轻人逐渐成为消费主力军&#xff0c;如何在虚拟世界与年轻一代用户互动以抓住95后年轻人受众&#xff0c;成为不少传统文化品牌发力的重点。 数字人“天妤”&#xff0c;在3D虚拟数字人定制中&#xff0…

免费的代码审查工具你知道这几个就够了?新手程序员必读

代码质量关系到一个项目的好坏&#xff0c;一直以来都是程序员和项目经理所关心的事情&#xff0c;在之前代码的检查用于人工或者静态页面&#xff0c;再后来就会用的各种工具来做因为不良的代码不仅会影响代码的可维护性&#xff0c;而且还会在某些情况下影响其性能。此外&…

已解决selenium.common.exceptions.InvalidCookieDomainException: Message: invalid cookie domain: Cookie ‘

已解决selenium.common.exceptions.InvalidCookieDomainException: Message: invalid cookie domain: Cookie ‘domain’ mismatch 文章目录 报错问题报错翻译报错原因解决方法千人全栈VIP答疑群联系博主帮忙解决报错 报错问题 粉丝群里面的一个小伙伴遇到问题跑来私信我&#…

从构建者到设计者的低代码之路

低代码开发技术&#xff0c;是指无需编码或通过少量代码就可以快速生成应用程序的工具&#xff0c;一方面可降低企业应用开发人力成本和对专业软件人才的需求&#xff0c;另一方面可将原有数月甚至数年的开发时间成倍缩短&#xff0c;帮助企业实现降本增效、灵活迭代。那么&…

【80天学习完《深入理解计算机系统》】第十五天 4.1 Y86-64指令集与Verilog HDL

专注 效率 记忆 预习 笔记 复习 做题 欢迎观看我的博客,如有问题交流,欢迎评论区留言,一定尽快回复!(大家可以去看我的专栏,是所有文章的目录)   文章字体风格: 红色文字表示:重难点★✔ 蓝色文字表示:思路以及想法★✔   如果大家觉得有帮助的话,感谢大家帮忙 点…

rsync远程同步+inotify监控

目录 一、Rsync 简介 1、rsync是什么 2、备份的方式 3、rsync同步方式 4、常用rsync命令 5、配置源的两种表达方法 二、rsync实验 1、本地复制 ​编辑​编辑 2、异地复制 2.1 rsync服务器配置 2.2 rsync客户端配置 2.2.1 普通同步 2.2.2 免密同步 2.2.3 --delet…

Linux基础命令(示例代码 + 解释)

查看目录下文件 ls [-a -l -h] [路径] -a&#xff08;全部&#xff09; -l&#xff08;细节&#xff09; -h&#xff08;大小&#xff09; ls ls / ls -a ls -l ls -h ls -alh ls -l -h -a ls -lah /切换目录 cd [路径] change di…

使用 System.exit() 来优雅地终止 Spring Boot 项目

&#x1f60a; 作者&#xff1a; 一恍过去 &#x1f496; 主页&#xff1a; https://blog.csdn.net/zhuocailing3390 &#x1f38a; 社区&#xff1a; Java技术栈交流 &#x1f389; 主题&#xff1a; 使用 System.exit() 来优雅地终止 Spring Boot 项目 ⏱️ 创作时间&am…

IIS解析漏洞复现

文章目录 漏洞复现总结 漏洞复现 打开虚拟机&#xff0c;在C:\inetpub\wwwroot\8000_test目录下放一个phpinfo.php文件&#xff1a; 在服务器管理器中打开IIS管理器&#xff0c;选择处理映射程序&#xff1a; 点击添加模块映射&#xff1a; 配置映射模板&#xff0c;php文件…

【猿灰灰赠书活动 - 06期】- 【计算机考研书单——408专属】

&#x1f468;‍&#x1f4bb;本文专栏&#xff1a;赠书活动专栏&#xff08;为大家争取的福利&#xff0c;免费送书&#xff09; &#x1f468;‍&#x1f4bb;本文简述&#xff1a;博文为大家争取福利&#xff0c;与机械工业出版社合作进行送书活动 &#x1f468;‍&#x1f…

​消费盲返模式:一种让消费者和商家都受益的新型消费返利模式

您是否想过&#xff0c;如果您的消费能够带来意想不到的回报&#xff0c;您会不会更愿意购买商品或服务呢&#xff1f;您是否想过&#xff0c;如果您的商品或服务能够吸引更多的消费者&#xff0c;并让他们成为您的忠实客户&#xff0c;您会不会更有动力经营您的业务呢&#xf…

一百七十四、Hive——Hive动态分区表加载数据时需不需要指定分区名?

一、目的 在Hive的DWD层和DWS层建立动态分区表后&#xff0c;发现动态插入数据时可以指定分区名&#xff0c;也可以不指定分区名。因此&#xff0c;研究一下它们的区别以及使用场景&#xff0c;从而决定在项目的海豚调度HiveSQL的脚本里需不需要指定动态分区的分区名&#xff…

【数据结构】长篇详解堆,堆的向上/向下调整算法,堆排序及TopK问题

文章目录 堆的概念性质图解 向上调整算法算法分析代码整体实现 向下调整算法算法分析整体代码实现 堆的接口实现初始化堆销毁堆插入元素删除元素打印元素判断是否为空取首元素实现堆 堆排序创建堆调整堆整合步骤 TopK问题 堆的概念 堆就是将一组数据所有元素按完全二叉树的顺序…

记录一次Docker与Redis冲突

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 报错以及Bug ✨特色专栏&#xff1a; …

避坑之路 —— 前后端 json 的注意问题

当我们在进行开发项目的时候&#xff0c;在前后端需要进行数据之间的传输&#xff0c;那么就会需要到json。而json算是字符串中的一种 1.先说一下前端的, 其实这两种都是表示前端希望能收到后端json这样的数据格式&#xff0c;那么我们在后端就需要注意将数据进行转换为json进…

深度学习模型复杂度分析大杂烩

深度学习模型复杂度分析大杂烩 时间复杂度和空间复杂度是衡量一个算法的两个重要指标,用于表示算法的最差状态所需的时间增长量和所需辅助空间. 在深度学习神经网络模型中我们也通过&#xff1a; 计算量/FLOPS&#xff08;时间复杂度&#xff09;即模型的运算次数 访存量/By…

数据结构与算法基础-学习-34-基数排序(桶排序)

目录 一、基本思想 二、算法思路 1、个位排序 &#xff08;1&#xff09;分配 &#xff08;2&#xff09;收集 2、十分位排序 &#xff08;1&#xff09;分配 &#xff08;2&#xff09;收集 三、源码分享 1、InitMyBucket 2、DestroyMyBucket 3、ClearMyBucket 4、…

软件测试/测试开发丨使用ChatGPT自动进行需求分析

简介 在实际工作过程中&#xff0c;常常需要拿到产品的PRD文档或者原型图进行需求分析&#xff0c;为产品的功能设计和优化提供建议。 而使用ChatGPT可以很好地帮助分析和整理用户需求。 实践演练 接下来&#xff0c;需要使用ChatGPT 辅助我们完成需求分析的任务 注意&…

【论文笔记】Baidu Apollo EM Motion Planner

文章目录 AbstractI. INTRODUCTIONA. Multilane StrategyB. Path-Speed Iterative AlgorithmC. Decisions and Traffic Regulations II. EM PLANNER FRAMEWORK WITH MULTILANE STRATEGYIII. EM PLANNER AT LANE LEVELA. SL and ST Mapping (E-step)B. M-Step DP PathC. M-Step …

01-Redis核心数据结构与高性能原理

上一篇&#xff1a; 1.Redis安装 下载地址&#xff1a;http://redis.io/download 安装步骤&#xff1a; # 安装gcc yum install gcc# 把下载好的redis-5.0.3.tar.gz放在/usr/local文件夹下&#xff0c;并解压 wget http://download.redis.io/releases/redis-5.0.3.tar.gz…