-
模型容量的影响:
泛化误差:
当训练的模型的容量过了最优点时,泛化误差反而升高,这是由于模型过于关注细节导致,模型也同时记住噪声;当拿来一个真的数据时,模型会被一些无关紧要的细节所干扰。 -
希望
模型容量的影响:
泛化误差:
当训练的模型的容量过了最优点时,泛化误差反而升高,这是由于模型过于关注细节导致,模型也同时记住噪声;当拿来一个真的数据时,模型会被一些无关紧要的细节所干扰。
希望
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/131803.html
如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!