常见的锁策略
- 1. 乐观锁 vs 悲观锁
- 2. 读写锁 vs 普通互斥锁
- 3. 重量级锁 vs 轻量级锁
- 4. 自旋锁(Spin Lock)vs 挂起等待锁
- 5. 公平锁 vs 非公平锁
- 6. 可重入锁 vs 不可重入锁
- 7. Synchronized
- 8. 相关面试题
1. 乐观锁 vs 悲观锁
悲观锁:
总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁。
乐观锁:
假设数据一般情况下不会产生并发冲突,在数据进行提交更新的时候,才会正式对数据是否产生并发冲突进行检测,如果发现并发冲突了,则返回用户错误的信息,让用户决定如何去做。
乐观锁的一个重要功能就是要检测出数据是否发生访问冲突. 我们可以引入一个 “版本号” 来解决.
假设我们需要多线程修改 “用户账户余额”.
设当前余额为 100. 引入一个版本号 version, 初始值为 1. 并且我们规定 “提交版本必须大于记录当前版本才能执行更新余额”
- 线程 A 此时准备将其读出( version=1, balance=100 ),线程 B 也读入此信息( version=1, balance=100 ).
- 线程 A 操作的过程中并从其帐户余额中扣除 50( 100-50 ),线程 B 从其帐户余额中扣除 20 ( 100-20 );
- 线程 A 完成修改工作,将数据版本号加1( version=2 ),连同帐户扣除后余额( balance=50 ),写回到内存中;
- 线程 B 完成了操作,也将版本号加1( version=2 )试图向内存中提交数据( balance=80 ),但此时比对版本发现,操作员 B 提交的数据版本号为 2 ,数据库记录的当前版本也为 2 ,不满足 “提交版本必须大于记录当前版本才能执行更新“ 的乐观锁策略。就认为这次操作失败.
悲观锁预期锁冲突概率很高,做的工作更多,付出成本更多,更低效
乐观锁预期锁冲突概率很低,做的工作更少,付出成本更少,更高效
Synchronized 初始使用乐观锁策略. 当发现锁竞争比较频繁的时候, 就会自动切换成悲观锁策略.
2. 读写锁 vs 普通互斥锁
读写锁就是把读操作和写操作区分对待. Java 标准库提供了 ReentrantReadWriteLock 类, 实现了读写锁.
- ReentrantReadWriteLock.ReadLock 类表示一个读锁. 这个对象提供了 lock / unlock 方法进行加锁解锁.
- ReentrantReadWriteLock.WriteLock 类表示一个写锁. 这个对象也提供了 lock / unlock 方法进行加锁解锁.
其中:
- 读加锁和读加锁之间, 不互斥.
- 写加锁和写加锁之间, 互斥.
- 读加锁和写加锁之间, 互斥.
读写锁特别适合于 “频繁读, 不频繁写” 的场景中
Synchronized 不是读写锁, 就是普通的互斥锁
3. 重量级锁 vs 轻量级锁
锁的核心特性 “原子性”, 这样的机制追根溯源是 CPU 这样的硬件设备提供的.
- CPU 提供了 “原子操作指令”.
- 操作系统基于 CPU 的原子指令, 实现了 mutex 互斥锁.
- JVM 基于操作系统提供的互斥锁, 实现了 synchronized 和 ReentrantLock 等关键字和类.
注意, synchronized 并不仅仅是对 mutex 进行封装, 在 synchronized 内部还做了很多其他的工作
重量级锁: 加锁机制重度依赖了 OS 提供了 mutex
- 大量的内核态用户态切换
- 很容易引发线程的调度
轻量级锁: 加锁机制尽可能不使用 mutex, 而是尽量在用户态代码完成. 实在搞不定了, 再使用 mutex.
- 少量的内核态用户态切换.
- 不太容易引发线程调度.
重量级锁加锁解锁开销比较大,效率较低,多数情况下悲观锁是重量级锁
轻量级锁加锁解锁开销比较小,效率较高,多数情况下乐观锁是轻量级锁
synchronized 开始是一个轻量级锁. 如果锁冲突比较严重, 就会变成重量级锁.
4. 自旋锁(Spin Lock)vs 挂起等待锁
挂起等待锁(典型的重量级锁):线程在抢锁失败后进入阻塞状态,放弃 CPU,需要过很久才能再次被调度.
但实际上, 大部分情况下,虽然当前抢锁失败,但过不了很久,锁就会被释放。没必要就放弃 CPU. 这个时候就可以使用自旋锁(典型的轻量级锁)来处理这样的问题.
自旋锁伪代码:
while (抢锁(lock) == 失败) {}
如果获取锁失败, 立即再尝试获取锁, 无限循环, 直到获取到锁为止. 第一次获取锁失败, 第二次的尝试会在极短的时间内到来.
一旦锁被其他线程释放, 就能第一时间获取到锁.
自旋锁是一种典型的 轻量级锁 的实现方式.
- 优点: 没有放弃 CPU, 不涉及线程阻塞和调度, 一旦锁被释放, 就能第一时间获取到锁.
- 缺点: 如果锁被其他线程持有的时间比较久, 那么就会持续的消耗 CPU 资源. (而挂起等待的时候是不消耗 CPU 的).
synchronized 中的轻量级锁策略大概率就是通过自旋锁的方式实现的.
5. 公平锁 vs 非公平锁
公平锁: 遵守 “先来后到”. B 比 C 先来的. 当 A 释放锁的之后, B 就能先于 C 获取到锁.
非公平锁: 不遵守 “先来后到”. B 和 C 都有可能获取到锁.
注意:
- 操作系统内部的线程调度就可以视为是随机的. 如果不做任何额外的限制, 锁就是非公平锁. 如果要想实现公平锁, 就需要依赖额外的数据结构, 来记录线程们的先后顺序.
- 公平锁和非公平锁没有好坏之分, 关键还是看适用场景.
synchronized 是非公平锁
6. 可重入锁 vs 不可重入锁
可重入锁的字面意思是“可以重新进入的锁”,即允许同一个线程多次获取同一把锁。
举个栗子:
Object locker = new Object();synchronized (locker) {System.out.println("第一次加锁");synchronized (locker) {System.out.println("第二次加锁");}}
按照之前对于锁的设定, 第二次加锁的时候, 就会阻塞等待. 直到第一次的锁被释放, 才能获取到第二个锁. 但是释放第一个锁也是由该线程来完成, 这个线程也就无法进行解锁操作. 这时候就会 死锁.
如果上述这种情况能造成死锁就是不可重入锁, 否则就是可重入锁。
synchronized 是可重入锁
7. Synchronized
- 既是乐观锁,又是悲观锁, 当锁冲突比较激烈时,从乐观锁变为悲观锁
- 既是轻量级锁,又是重量级锁,
- Synchronized的轻量级锁基于自旋锁实现, 重量级锁基于挂起等待锁实现
- 不是读写锁, 只是普通的互斥锁
- 是可重入锁
- 是非公平锁
8. 相关面试题
- 你是怎么理解乐观锁和悲观锁的,具体怎么实现呢?
-
悲观锁认为多个线程访问同一个共享变量冲突的概率较大, 会在每次访问共享变量之前都去真正加锁.
-
乐观锁认为多个线程访问同一个共享变量冲突的概率不大. 并不会真的加锁, 而是直接尝试访问数据. 在访问的同时识别当前的数据是否出现访问冲突.
-
悲观锁的实现就是先加锁(比如借助操作系统提供的 mutex), 获取到锁再操作数据. 获取不到锁就等待.
-
乐观锁的实现可以引入一个版本号. 借助版本号识别出当前的数据访问是否冲突.
- 介绍下读写锁?
- 读写锁就是把读操作和写操作分别进行加锁.
- 读锁和读锁之间不互斥.
- 写锁和写锁之间互斥.
- 写锁和读锁之间互斥.
读写锁最主要用在 “频繁读, 不频繁写” 的场景中.
- 什么是自旋锁,为什么要使用自旋锁策略呢,缺点是什么?
- 如果获取锁失败, 立即再尝试获取锁, 无限循环, 直到获取到锁为止. 第一次获取锁失败, 第二次的尝试会在极短的时间内到来. 一旦锁被其他线程释放, 就能第一时间获取到锁.
相比于挂起等待锁,
- 优点: 没有放弃 CPU 资源, 一旦锁被释放就能第一时间获取到锁, 更高效. 在锁持有时间比较短的场景下非常有用.
- 缺点: 如果锁的持有时间较长, 就会浪费 CPU 资源.
- synchronized 是可重入锁么?
- 是可重入锁.
- 可重入锁指的就是连续两次加锁不会导致死锁.
实现的方式是在锁中记录该锁持有的线程身份, 以及一个计数器(记录加锁次数). 如果发现当前加锁的线程就是持有锁的线程, 则直接计数自增.
好啦! 以上就是对 常见的锁策略 的讲解,希望能帮到你 !
评论区欢迎指正 !